
TMP95CU54A

2005-05-10 95CU54A-1

CMOS 16-Bit Microcontrollers
TMP95CU54AF

1. Outline and Features

The TMP95CU54A is a high-speed 16-bit microcontroller designed for the control of various mid-
to large-scale equipment.

The TMP95CU54A comes in a 100-pin flat package.
Listed below are the features of the TMP95CU54A.

(1) High-speed 16-bit CPU (900/H CPU)

• Instruction mnemonics are upward-compatible with the TLCS-90/900
• 16 Mbytes of linear address space
• General-purpose registers and register banks
• 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
• Micro DMA : Four-channels (667 ns/2 bytes at 24 MHz)

(2) Minimum instruction execution time : 167 ns (at 24 MHz)

(3) Built-in RAM : 3 Kbytes
 Built-in ROM : 96 Kbytes

(4) External memory expansion
• Expandable up to 16 Mbytes (shared program/data area)
• External data bus width select pin (16/8ΑΜ)
• Can simultaneously support 8/16-bit width external data bus

··· Dynamic data bus sizing

(5) 8-bit timers : 8 channels
• With event counter function : 2 channels

(6) 16-bit timer/event counter : 2 channels

• The information contained herein is subject to change without notice.
• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by

TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of TOSHIBA or others.

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in
general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of
the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system,
and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor
failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document
shall be made at the customer’s own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.
• TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any

law and regulations.
• For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality

and Reliability Assurance/Handling Precautions.

030619EBPRESTRICTIONS ON PRODUCT USE

TMP95CU54A

2005-05-10 95CU54A-2

(7) General-purpose serial interface : 2 channels

(8) Serial Expansion Interface : 1 channel

(9) CAN Controller : 1 channel

(10) 10-bit AD converter : 8 channels

(11) Watchdog timer

(12) Bus width/wait controller : 4 blocks
(13) Interrupts : 49 interrupts

• 9 CPU interrupts : Software interrupt instruction and illegal instruction
• 30 internal interrupts : Seven selectable priority levels
• 10 external interrupts : Seven selectable priority levels

(14) Input/output ports : 81 pins
(15) Standby mode

• Four HALT modes : RUN, IDLE2, IDLE1, STOP

(16) Operating voltage
• VCC = 4.5 to 5.5 V

(17) Package
• P-LQFP100-1414-0.50D

TMP95CU54A

2005-05-10 95CU54A-3

900/H CPU

XWA
XBC
XDE
XHL
XIX
XIY
XIZ
XSP

W A
B C
D E
H L

IX
IY
IZ
SP

32-bit
 FSR

P C

Note: After a reset, functions in parentheses () are selected for the shared pins.

Figure 1.1 TMP95CU54A Block Diagram

TMP95CU54A

2005-05-10 95CU54A-4

2. Pin Assignment and Pin Functions
This section shows the TMP95CU54A pin assignment, and the names and an outline of the

functions of the input/output pins.

2.1 Pin Assignment Diagram

Figure 2.1.1 is the pin assignment diagram for the TMP95CU54A.

Figure 2.1.1 Pin Assignment Diagram (100-Pin LQFP)

TMP95CU54A

2005-05-10 95CU54A-5

2.2 Pin Names and Functions

Table 2.2.1 shows the names and functions of the input/output pins.

Table 2.2.1 Pin Names and Functions (1/4)

TMP95CU54A

2005-05-10 95CU54A-6

Table 2.2.1 Pin Names and Functions (2/4)

TMP95CU54A

2005-05-10 95CU54A-7

Table 2.2.1 Pin Names and Functions (3/4)

TMP95CU54A

2005-05-10 95CU54A-8

Table 2.2.1 Pin Names and Functions (4/4)

TMP95CU54A

2005-05-10 95CU54A-9

3. Operation
The following is a bock-by-block description of the functions and basic operation of the

TMP95CU54A.
Notes and restrictions for each block are outlined in “7, Use Precautions and Restrictions” on

page 276 of this manual.

3.1 CPU

TMP95CU54A incorporates a high-performance 16-bit CPU (900/H-CPU). For CPU
operation, see the section dealing with the TLCS-900/H CPU.

The following describes the unique functions of the CPU used in the TMP95CU54A; these
functions are not covered in the TLCS-900/H CPU section.

3.1.1 Reset

When resetting the TMP95CU54A microcontroller, ensure that the power supply voltage
is within the operating voltage range, and that the internal high-frequency oscillator has
stabilized. Then hold the RESET input to low level for at least 10 system clocks (ten
states: 0.83 µs at 24 MHz).

When the reset is accepted, the CPU:

• Sets as follows the program counter (PC) in accordance with the reset vector stored at
address FFFF00H - FFFF02H:
PC (7:0) ← value at FFFF00H address
PC (15:8) ← value at FFFF01H address
PC (23:16) ← value at FFFF02H address

• Sets the stack pointer (XSP) to 100H.
• Sets bits <IFF2:0> of the status register (SR) to 111 (sets the interrupt level mask

register to level 7).
• Sets the <MAX> bit of the status register to 1 (MAX mode).

(Note: As this product does not support a MIN mode, do not write 0 to <MAX>.)
• Clears bits <RFP2:0> of the status register to 000 (sets the register bank to 0).

When reset is released, the CPU starts executing instructions in accordance with the

program counter settings. CPU internal registers not mentioned above do not change when
the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports, and other pins as follows.
• Initializes the internal I/O registers.
• Sets the port pins, including the pins that also act as internal I/O, to general-purpose

input or output port mode.
• Pulls up the CLK pin to high level.

(Note: During reset, do not reduce the external voltage level as this can cause
malfunction.)

• Pulls up the P30 pin to high level.
(Note: During reset, do not reduce the external voltage level as this can cause
malfunction.)

TMP95CU54A

2005-05-10 95CU54A-10

Figure 3.1.1 shows an example of the basic timing of the reset operation.

Figure 3.1.1 TMP95CU54A Reset Timing Example

3.1.2 External data bus width selection (16AM8/ Pin)

Connect the input pin to VCC. After a reset, this pin accesses ROM by the internal 16-bit
bus.

The data bus width for an external access depends on the setting in the <B0BUS>,
<B1BUS>, <B2BUS>, <B3BUS> or <BEXBUS> bit of the bus width/wait control registers.
To access the 16-bit bus, set port 1 to D8 to D15.

TMP95CU54A

2005-05-10 95CU54A-11

3.2 Memory Map

Figure 3.2.1 shows the memory map and the access widths for the CPU addressing modes.

Figure 3.2.1 TMP95CU54A Memory Map

TMP95CU54A

2005-05-10 95CU54A-12

3.3 Interrupts

Interrupts are controlled by the CPU interrupt mask register <IFF2:0> (bits 14 to 12 of the
status register) and by the built-in interrupt controller.

The TMP95CU54A has a total of 49 interrupts divided into the following five types:

Interrupts generated by CPU : 9
• Software interrupts : 8
• Illegal instruction : 1
Internal interrupts : 30
• Internal I/O interrupts : 26
• Micro DMA transfer end interrupts : 4
External interrupts : 10
• Interrupts from external pins (NMI , INT0 to INT8)

A (fixed) individual interrupt vector number is assigned to each interrupt.
One of seven (variable) priority levels can be assigned to each maskable interrupt. The

priority level of non-maskable interrupts is fixed at 7, the highest level.
When an interrupt is generated, the interrupt controller sends the priority of that interrupt

to the CPU. If multiple interrupts are generated simultaneously, the interrupt controller sends
the interrupt with the highest priority to the CPU. (The highest priority possible is level 7,
used for non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupt
mask register <IFF2:0>. If the priority level of the interrupt is higher than the value of the
interrupt mask register, the CPU accepts the interrupt. However, software interrupts and
illegal instruction interrupts generated by the CPU are processed without comparison with the
<IFF2:0> value.

The interrupt mask register <IFF2:0> value can be updated using the value of the EI
instruction (executing EI num sets the content of <IFF2:0> to num). For example, specifying EI
3 enables the acceptance of maskable interrupts whose priority level set in the interrupt
controller is 3 or higher, and enables the acceptance of non-maskable interrupts. However, if EI
or EI 0 is specified, maskable interrupts with a priority level of 1 or higher and non-maskable
interrupts are accepted (operationally identical to “EI 1”).

Operationally, the DI instruction (<IFF2:0> is 7) is identical to the EI 7 instruction, but as the
priority level of maskable interrupts is 0 to 6, the DI instruction is used to disable maskable
interrupts. The EI instruction is valid immediately after execution begins. (With the TLCS-90,
the EI instruction is valid after execution of the instruction following the EI instruction.)

TMP95CU54A

2005-05-10 95CU54A-13

In addition to the general-purpose interrupt processing mode described above, the
TLCS-900/H interrupts also have a micro DMA processing mode.

Because the CPU transfers data (byte transfer, word transfer, or 4-byte transfer)
automatically in micro DMA mode, this mode can be used for speeding up interrupt processing,
such as transferring data to I/O.

The TMP95CU54A also has a micro DMA soft start function for requesting micro DMA
processing by software rather than by interrupt.

Figure 3.3.1 shows the overall interrupt processing flow.

Figure 3.3.1 Interrupt and Micro DMA Processing Flow

TMP95CU54A

2005-05-10 95CU54A-14

3.3.1 General-purpose interrupt processing

When the CPU accepts an interrupt, the CPU performs the following processing.
However, in the case of software interrupts and illegal instruction interrupts generated by
the CPU, the CPU skips [1] and [3] and executes steps [2], [4], and [5].

[1] The CPU reads the interrupt vector from the interrupt controller. If there are

simultaneous interrupts set to the same level, the interrupt controller generates
an interrupt vector in accordance with the default priority and clears the interrupt
request.
(The default priority is already fixed for each interrupt: the smaller the vector
value, the higher the priority level.)

[2] The CPU saves the contents of the program counter (PC) and status register (SR)
to the stack area (indicated by XSP).

[3] The CPU sets the value of the CPU’s interrupt mask register <IFF2:0> to the
received interrupt level incremented by 1. However, if the incremented value level
is 7 or higher, the CPU just sets the register to 7.

[4] The CPU increments interrupt nesting counter INTNEST by 1.

[5] The CPU jumps to the address indicated by the data at address FFFF00H +
interrupt vector, and starts the interrupt processing routine.

Table 3.3.1 shows the times for the above processing.

Table 3.3.1 Interrupt Processing Times for Bus Widths

When the CPU has completed the interrupt processing, use the RETI instruction to

return to the main routine. This instruction restores the contents of the program counter
and status register from the stack, and decrements interrupt nesting counter INTNEST by
1.

Non-maskable interrupts cannot be disabled by program. Maskable interrupts can be
enabled or disabled by program. The program can set a priority level for every interrupt
source. (Setting the priority level to 0 (or 7) disables the interrupt request.)

TMP95CU54A

2005-05-10 95CU54A-15

If a request is received for an interrupt with a higher priority level than that set in the
CPU interrupt mask register <IFF2:0>, the CPU accepts the interrupt. Set the CPU
interrupt mask register <IFF2:0> to the received interrupt priority level incremented by 1.

If, during interrupt processing, an interrupt is generated with a higher level than the
interrupt being currently processed, or if, during non-maskable interrupt processing, a
non-maskable interrupt request is generated from another source, the CPU suspends the
current processing routine and accepts the later interrupt. Then, after the CPU has
finished processing the later interrupt, the CPU returns to the interrupt it previously
suspended and resumes processing.

If the CPU receives a request for another interrupt while already performing processing
steps [1] to [5], the second interrupt is sampled immediately after execution of the start
instruction for its interrupt processing routine. Specifying DI as the start instruction
disables maskable interrupt nesting. (Note: In the 900 and 900/L, sampling is performed
before execution of the start instruction.)

After a reset, the interrupt mask register <IFF2:0> is initialized to 111, thus disabling
maskable interrupts.

The following steps (1) through (5) show the interrupt processing flow.

(1) Maskable interrupts

(2) Non-maskable interrupts (NMI, INTWD)

When the CPU accepts an interrupt, it sets IFF to the priority
level of the interrupt incremented by 1.
Accordingly, if during interrupt processing an interrupt
request is received with the same or a lower priority than that
of the interrupt being processed, because this priority level is
lower than the IFF value, the second interrupt cannot be
accepted until the processing of the prior interrupt is
complete.

Note: ＿ (underline): Instruction
 : Execution flow
 IFF: Interrupt mask register

When the DI instruction is executed (IFF is 7), only
non-maskable interrupts can be received (because the
priority level of non-maskable interrupts is fixed to 7.)
When the EI instruction is executed, the CPU sets IFF to 7
upon acceptance of an NMI or INTWD interrupt.

TMP95CU54A

2005-05-10 95CU54A-16

(3) Non-maskable interrupts (Software interrupts, illegal instruction interrupts)

(4) Interrupt nesting

(5) Interrupt sampling (Maskable interrupt nesting disabled)

Table 3.3.2 shows the TMP95CU54A interrupt vectors and micro DMA start vectors.
With the TMP95CU54A, FFFF00H to FFFFFFH (256 bytes) is allocated to the
interrupt vector area.

When the DI instruction is executed (IFF is 7),
the CPU can accept interrupts. However,
unlike with NMI or INTWD interrupts, IFF does
not change upon acceptance of an interrupt.
Therefore, during processing of a software
interrupt, if a request is received for an interrupt
with a priority the same or higher than the IFF
value, the interrupt is nested.

During interrupt processing, if a request is
received for an interrupt with a priority the
same or higher than the interrupt being
processed (the interrupt priority level is the
same as or higher than the IFF value), the
CPU receives the second interrupt and nests
it.

If, after the time the CPU has accepted an interrupt but
before the CPU begins processing it, the CPU receives a
request for another interrupt with a higher priority, the second
interrupt is nested after execution of the start instruction for
processing of the interrupt accepted first.
Accordingly, issuing the DI instruction as the start instruction
disables nesting of maskable interrupts.

Note: ＿ (underline): Instruction.
 : Execution flow
 IFF: Interrupt mask register

TMP95CU54A

2005-05-10 95CU54A-17

Table 3.3.2 TMP95CU54A Interrupt Vectors and Micro DMA Start Vectors

(SEF/WCOL/SOVF)

TMP95CU54A

2005-05-10 95CU54A-18

Setting reset vectors and interrupt vectors
[1] Reset vector

[2] Interrupt vectors (Other than reset vector)

(Setting example)
Where the reset vector is defined as FF0000H, the NMI vector as FF9ABCH,

and the INT1 vector as FF3456H

TMP95CU54A

2005-05-10 95CU54A-19

3.3.2 Micro DMA processing

In addition to general-purpose interrupt processing, the TMP95CU54A supports a micro
DMA function. Interrupt requests set by the micro DMA perform micro DMA processing at
the highest priority level of maskable interrupts (level 6), regardless of the priority level of
the particular interrupt source.

Because the micro DMA function is implemented with the cooperative operation of the
CPU, when the CPU is put into stand-by state by a HALT instruction, micro DMA
requirements will be ignored (pending).

(1) Micro DMA operation

When an interrupt request is generated by an interrupt source specified by the micro
DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at
interrupt priority level 6 and starts processing the request. The four micro DMA
channels allow micro DMA processing to be set for up to four types of interrupts at any
one time.

When micro DMA is accepted, the interrupt request flip-flop assigned to that
channel is cleared. The data are automatically transferred from the transfer source
address to the transfer destination address set in the control register, and the transfer
counter is decremented by 1. If the decremented counter reads other than 0, DMA
processing ends with no change in the value of the micro DMA start vector register. If
the decremented reading is 0, the micro DMA transfer end interrupt (INTTC0 to 3)
passes from the CPU to the interrupt controller. In addition, the micro DMA start
vector register is cleared to 0, the next micro DMA is disabled, and micro DMA
processing is complete.

If a micro DMA request is set for more than one channel at a time, the priority is not
based on the interrupt priority level but on the channel number: the smaller the
channel number the higher the priority. (Channel 0 (high) --> channel 3 (low)).

If an interrupt request is triggered for the interrupt source in use during the interval
between the clearing of the micro DMA start vector and the next setting,
general-purpose interrupt processing is executed at the interrupt level set. Therefore,
when using the interrupt only for starting the micro DMA (not using the interrupt as a
general-purpose interrupt), first set the interrupt level to 0 (interrupt requests
disabled).

When using micro DMA and general-purpose interrupts together as described above,
first set the level of the interrupt used to start micro DMA processing lower than all the
other interrupt levels. In this case, the cause of a general interrupt is limited to the
edge interrupt.

Example: When using external interrupt INT0 to 3 to start micro DMA0 to 3, set:

External interrupt INT0 to 3 interrupt level “1”
Level of other interrupts .. “2” to “6”

As with other maskable interrupts, the priority of the micro DMA transfer end

interrupt is determined by the interrupt level and the default priority.

TMP95CU54A

2005-05-10 95CU54A-20

While the register for setting the transfer source/transfer destination addresses is a
32-bit control register, this register can only effectively output 24-bit addresses.
Accordingly, micro DMA can access 16 Mbytes (the upper eight bits of the 32 bits are
not valid).

Three micro DMA transfer modes are supported: 1-byte transfer, 2-byte (one word)
transfer, and 4-byte transfer. After a transfer in any mode, the transfer
source/destination addresses are incremented, decremented, or remain unchanged.
This simplifies the transfer of data from I/O to memory, from memory to I/O, and from
I/O to I/O. For details of the transfer modes, see 3.3.2 (4) Transfer Mode Register.

As the transfer counter is a 16-bit counter, micro DMA processing can be set for up to
65536 times per interrupt source. (The micro DMA processing count is maximized
when the transfer counter initial value is set to 0000H.)

Micro DMA processing can be started by the 30 interrupts (INT0 to INTTX1, INTAD,
INTSE1, INTSE2) shown in the micro DMA start vectors of Table 3.3.2 and by the
micro DMA soft start, making a total of 31 interrupts.

Figure 3.3.2 shows the micro DMA cycle in transfer destination address INC mode
(the same as for other modes, with the exception of COUNTER mode).

[1] Word transfer (the conditions for this cycle are based on an external 16-bit bus, 0

waits, transfer source/transfer destination addresses both even-numbered values)

Address Address + 2

Figure 3.3.2 Timing of Micro DMA Cycle (1/3)

States 1 to 3: Instruction fetch cycle (gets next address code).
If three or more instruction codes are inserted in the instruction queue buffer, this cycle
becomes a dummy cycle.

States 4 to 5: Micro DMA read cycle
State 6 : Dummy cycle (the address bus remains as in state 5)
States 7 to 8: Micro DMA write cycle

Note 1: If the source address area is an 8-bit bus, it is incremented by two states.
Note 2: If the destination address area is an 8-bit bus, it is incremented by two states.

TMP95CU54A

2005-05-10 95CU54A-21

A
dd

re
ss

A

dd
re

ss
 +

 2

Fi
gu

re
 3

.3
.2

Ti

m
in

g
of

 M
ic

ro
 D

M
A

C
yc

le
 (3

/3
)

[2
]

W
or

d
tr

an
sf

er
 (t

he
 c

on
di

tio
ns

 fo
r

th
is

 c
yc

le
 a

re
 b

as
ed

 o
n

a
16

-b
it

ex
te

rn
al

 b
us

, 0
 w

ai
ts

, t
ra

ns
fe

r
so

ur
ce

/tr
an

sf
er

 d
es

tin
at

io
n

ad
dr

es
se

s
bo

th
 o

dd
-

nu
m

be
re

d
va

lu
es

)

[3
]

4-
by

te
 tr

an
sf

er
 (t

he
 c

on
di

tio
ns

 fo
r

th
is

 c
yc

le
 a

re
 b

as
ed

 o
n

a
16

-b
it

ex
te

rn
al

 b
us

, 0
 w

ai
ts

, t
ra

ns
fe

r
so

ur
ce

/tr
an

sf
er

 d
es

tin
at

io
n

ad
dr

es
se

s
bo

th
 e

ve
n-

nu

m
be

re
d

va
lu

es
)

A

dd
re

ss

A
dd

re
ss

 +
 2

Fi
gu

re
 3

.3
.2

Ti

m
in

g
of

 M
ic

ro
 D

M
A

C
yc

le
 (2

/3
)

TMP95CU54A

2005-05-10 95CU54A-22

(2) Micro DMA soft start function
In addition to starting micro DMA by interrupt, the TMP95CU54A supports a micro

DMA soft start function. This starts micro DMA by generating a cycle to write to the
soft DMA control register.

To code a soft start, write micro DMA start vector FCH to micro DMA start vector
register DMA0V to 3V (at memory addresses 5AH, 5BH, 5CH, and 5DH).

Then, write any data to soft DMA control register SDMACR0 to 3 (at memory
addresses 6AH, 6BH, 6CH, and 6DH). (The value of the data has no effect on the
operation of the soft start.) This starts micro DMA of the applicable channel once.
Then, whenever data are written again to the soft DMA control register, as long as the
micro DMA transfer counter register values are other than 0, a soft start can be
continuously triggered (without rewriting the micro DMA start vector).

Setting the micro DMA start vector is a prerequisite for generating a micro DMA
software start. (The software start request is a one-shot request and not saved.
Therefore, even if a cycle which writes to the soft DMA control register is generated,
unless the micro DMA start vector is already set, a soft start cannot be generated.)

TMP95CU54A

2005-05-10 95CU54A-23

(3) Structure of micro DMA-only registers
Figure 3.3.3 shows the micro DMA-only registers. These registers are incorporated

in the CPU. (See 3.2.5, Control Registers in Chapter 3, TLCS-900/H CPU.) To set the
registers use the LDC instruction.

Set the transfer source address in the transfer source address register; the transfer
destination address, in the transfer destination address register. These address
registers use only the lower 24 bits. They support a 16M-byte address space.

Use the transfer counter register to set the number of times micro DMA is performed
between 1 and 65536.

For details on setting the transfer mode register, see 3.3.2 (4), Transfer Mode
Register.

Only the LDC cr, r instruction can load data into the micro DMA-only registers.

Figure 3.3.3 Micro DMA-Only Registers

TMP95CU54A

2005-05-10 95CU54A-24

(4) Transfer mode register
To set micro DMA transfer mode, use transfer mode register DMAM0 to 3. Table

3.3.3 shows the settings for each mode and the numbers of execution states.

Table 3.3.3 Micro DMA Transfer Mode

TMP95CU54A

2005-05-10 95CU54A-25

3.3.3 Interrupt Controller Control

Figure 3.3.4 is a block diagram of the interrupt controller circuit. The left-hand side of
this diagram shows the interrupt controller. The right-hand side shows the CPU interrupt
request signal circuit and CPU halt release circuit. (For details on halt modes, see 3.4,
Standby Function.)

The interrupt controller has a total of 40 interrupt channels, consisting of NMI, INTWD,
INT0 to 8, INTT0 to 7, INTTR8 to O9, INTRX0 to TX1, INTCR to G, INTSE0 to 2, INTAD,
and INTTC0 to 3.

Each interrupt channel supports:
• Interrupt request flag (40 channels)
• Interrupt priority setting register (38 channels (NMI and INTWD excluded)).

In addition, there are also four channels of start vector registers for performing micro
DMA processing.

(1) Interrupt request flags

The function of the interrupt request flag is to indicate the generation of an interrupt
request. Apart from NMI and INTWD, each channel has a clear bit <IxxC> for clearing
the interrupt requests (see Figure 3.3.5, Interrupt Priority Setting Registers). Reading
clear bit <IxxC> reads the state of the interrupt request flag and indicates whether an
interrupt request is generated or not.

The interrupt request flags are zero-cleared by the following operations:
[1] A reset (clears all interrupt request flags)

[2] When the CPU accepts an interrupt and reads the vector of the accepted interrupt
channel

[3] When the CPU accepts the micro DMA request of the specified channel

[4] When 0 is written to clear bit <IxxC> of the interrupt priority setting register

Note: [2], [3], and [4] operations do not include INT0 level mode or INTRX0, 1.

In addition, flags are also cleared by the following operations.

Table 3.3.4 Other Flag Clearing Operations

Before clearing an interrupt request by writing 0 to the clear bit or by performing a

Table 3.3.4 operation to clear the interrupt request flag, first execute the DI
instruction.

TMP95CU54A

2005-05-10 95CU54A-26

(INT0 interrupt cautions)
Note the following cautions when using the INT0 interrupt in level mode.
In level mode, the INT0 pin input must be held continuously at high level until the

interrupt response sequence is completed. Likewise, when releasing the halt in this
mode, the INT0 pin must be held continuously at high level until the halt is released.

When using INT0 level mode, be sure that a low level is not input as a result of noise
as this can cause malfunction.

When switching the INT0 pin operation mode from level to edge mode, first disable
the INT0 interrupt as follows. (In level mode, an accepted interrupt request must be
cleared.)

Setting example:
 DI ; disable interrupt
 LD (IIMC), XX0XXX0XB ; switch from level to edge
 LD (INTE0AD), XXXX0nnnB ; clear interrupt request flag and set INT0

interrupt level to n
 EI ; enable interrupt

TMP95CU54A

2005-05-10 95CU54A-27

Figure 3.3.4 Block Diagram of Interrupt Controller

TMP95CU54A

2005-05-10 95CU54A-28

(2) Interrupt priority setting register
Figure 3.3.5 shows the interrupt priority setting registers. Each of the 38 interrupt

channels (INT0 to AD, INTTC0 to 3, INTSE1, INTSE2) has an interrupt request level
setting bit <IxxM2:0>. An interrupt request is generated at six interrupt levels (levels
1 through 6). Setting the priority level to 0 (or 7) disables the corresponding interrupt
request. The priority level for non-maskable interrupts (NMI pin input) is fixed to 7.
If two or more interrupts with the same level occur simultaneously, the interrupts are
accepted in accordance with the default priority.

Figure 3.3.5 Interrupt Priority Setting Registers (1/2)

TMP95CU54A

2005-05-10 95CU54A-29

Figure 3.3.5 Interrupt Priority Setting Registers (2/2)

TMP95CU54A

2005-05-10 95CU54A-30

From among simultaneous interrupts, the interrupt controller selects the interrupt
request with the highest level and sends its vector address to the CPU.

Then, the CPU compares the priority level of the interrupt request with the value of
the interrupt mask register <IFF2:0> in the status register. If the priority level of the
interrupt request is higher than the value of the interrupt mask register, the CPU
accepts the interrupt. When the CPU side interrupt mask register <IFF2:0> is set to
the priority level of the received interrupt incremented by 1, subsequent interrupt
requests are only accepted if their level is equal to or greater than the incremented
value.

(3) Micro DMA start vector
The interrupt controller has four channels of micro DMA start vector registers.

Writing the micro DMA start vector value (Table 3.3.2) for each interrupt source to
these registers makes the applicable interrupt request into a micro DMA request. But
first set values in the registers for micro DMA parameters (DMAS, DMAD, DMAC,
DMAM). Figure 3.3.6 shows the micro DMA start vector registers.

The function of the micro DMA start vector registers is to select the interrupt to use
with micro DMA processing. The micro DMA start source is assigned to the interrupt
source whose micro DMA start vector matches the vector value set in the micro DMA
start vector register.

When the value of the micro DMA transfer counter is set to 0 after micro DMA
processing, the CPU generates a micro DMA transfer end interrupt (INTTC0 to 3)
corresponding to the micro DMA start vector register. When the micro DMA start
vector register is cleared, the micro DMA startup source is released. Therefore, when
continuously performing micro DMA processing, set the start vector value in the micro
DMA start vector register again during processing of the micro DMA transfer end
interrupt.

When the same vector is set in the micro DMA start vector registers of multiple
channels, the lower the channel number the higher the priority.

The channel with the lowest number is executed until the micro DMA transfer end
interrupt. Unless the micro DMA start vector is set again during the processing of the
micro DMA transfer end interrupt, the subsequent micro DMA startup moves to the
next smallest channel number. (This operation is called a micro DMA chain.)

TMP95CU54A

2005-05-10 95CU54A-31

Setting Micro DMA Startup Source

Figure 3.3.6 Setting Micro DMA Start Vector Register and Startup Source

TMP95CU54A

2005-05-10 95CU54A-32

(4) External interrupt control
Table 3.3.5 shows the function settings for the external interrupt pins.
TMP95CU54A can select the operating mode for the NMI , INT0, INT5, or INT7 pins

from among external interrupt functions. (For details on the external interrupt
function pulse width, see “4.7 Interrupt Operations”.)

Table 3.3.5 Setting Functions on External Interrupt Pins

TMP95CU54A

2005-05-10 95CU54A-33

The input mode of the NMI and INT0 interrupts can be controlled by interrupt input
mode control register IIMC.

Figure 3.3.7 shows the interrupt input mode control register.

Figure 3.3.7 Interrupt Input Mode Control Register

(5) Caution
When the CPU fetches an instruction to clear the interrupt request flag for the

interrupt controller immediately before an interrupt is generated, the CPU may
execute the instruction between receiving the interrupt and reading the interrupt
vector.

To avoid the above occurring, clear the interrupt request flag by entering the
instruction to clear the flag after the DI instruction. When setting an interrupt enable
again by EI instruction after the execution of a clearing instruction, execute the EI
instruction after the clearing instruction and following the execution of more than one
more instruction. If the EI instruction is placed immediately after the clearing
instruction, an interrupt could be enabled before interrupt request flags are cleared.

When changing the value of the interrupt mask register<IFF2:0> by execution of a
POP SR instruction, disable interrupts by DI instruction before execution of the POP
SR instruction.

TMP95CU54A

2005-05-10 95CU54A-34

3.4 Standby Function

(1) HALT modes
When the TMP95CU54A executes a HALT instruction, WDMOD<HALTM1:0> of the

watchdog timer mode register can be used to set one of the following HALT modes: RUN,
IDLE2, IDLE1, STOP. Figure 3.4.1 shows the watchdog timer mode control register.

Figure 3.4.1 Watchdog Timer Mode Control Register

TMP95CU54A

2005-05-10 95CU54A-35

The characteristics of RUN, IDLE2, IDLE1, and STOP modes are as follows:
[1] RUN: In this mode, only the CPU is halted. Power dissipation is almost the same as

when the CPU is operating.

[2] IDLE2: Only the internal oscillator and specific internal I/O operate. Power dissipation
is around one half that when the CPU is operating.

[3] IDLE1: Only the internal oscillator operates; all other circuits are halted. Power
dissipation is one tenth of operating mode dissipation.

[4] STOP: All internal circuits, including the internal oscillator, are halted. In this mode,
power dissipation drops considerably.

Table 3.4.1 shows the operation of all blocks in HALT modes.

Table 3.4.1 Blocks and I/O Pin Operation in Halt Modes

(2) Release from HALT mode

Release from HALT mode can trigger an interrupt request or a reset. A combination of
the interrupt mask register <IFF2:0> state and the halt mode determine the useable halt
release source. (For details, see Table 3.4.2)

• Release by interrupt request

The operation to release HALT mode by using an interrupt request differs according
to the interrupt enable state. If the interrupt request level set prior to the execution of
the HALT instruction is higher than the interrupt mask register value, after HALT
mode is released, interrupt processing is performed by this source, and processing
starts from the next instruction following the HALT instruction. If the interrupt
request level is lower than the interrupt mask register value, HALT mode is not
released. (At a non-maskable interrupt, interrupt processing is performed after HALT
mode release irrespective of the mask register value.)

However, in the case of the INT0 interrupt only, HALT mode can be released if the
interrupt request level is lower than the interrupt mask register value. In this case the
interrupt processing is not performed. Processing always starts from the next
instruction following the HALT instruction. (The INT0 interrupt request flag is held at
1.)
Note: Usually, interrupts can release all halts status. However, the interrupts (= NMI,

INT0) which can release the HALT mode may not be able to do so if they are
input during the period when the CPU is shifting to the HALT mode (for about 3
clocks of fc) with IDLE1 or STOP mode (RUN and IDLE2 are not applicable to
this case). (In this case, an interrupt request is kept on hold internally)
If another interrupt is generated after it has shifted completely to HALT mode,

TMP95CU54A

2005-05-10 95CU54A-36

halt status can be released without difficulty. The priority of this interrupt is
compared with that of the interrupt kept on hold internally, and the interrupt
with the higher priority is handled first followed by the other interrupt.

• Release by reset

All HALT modes can be released by a reset. However, when releasing STOP mode,
allow sufficient reset time (at least 3ms) for the oscillator to stabilize.

When releasing HALT mode by a reset, the internal RAM retains the data prevailing
immediately prior to entering the HALT mode. However, other settings are initialized.

Table 3.4.2 Halt Release Sources and Halt Release Operation

Interrupt accept state
Interrupt enabled

(interrupt request level) ≥ (interrupt mask)
Interrupt disabled

(interrupt request level) < (interrupt mask)
HALT mode RUN IDLE2 IDLE1 STOP RUN IDLE2 IDLE1 STOP

In
te

rru
pt

 s
ou

rc
e

NMI
INTWD
INT0
INT1 to 8
INTT0 to 7
INTTR8, 9, A, B
INTTO8, 9
INTRX0, TX0
INTRX1, TX1
INTCR, CT, CG
INTSE0, 1, 2
INTAD

□
□
□
□
□
□
□
□
□
□
□
□

□
×
□
□
□
□
□
□
□
□
□
×

□
×
□
×
×
×
×
×
×
×
×
×

□*1
×
□*1
×
×
×
×
×
×
×
×
×

−
−
O
×
×
×
×
×
×
×
×
×

−
−
O
×
×
×
×
×
×
×
×
×

−
−
O
×
×
×
×
×
×
×
×
×

−
−

O*1
×
×
×
×
×
×
×
×
×

H
A

LT
 re

le
as

e
so

ur
ce

RESET □ □ □ □ □ □ □ □

□: After HALT mode release, the CPU starts interrupt processing (a reset initializes the LSI).
O: After HALT mode release, processing starts from the next instruction following the HALT instruction.

(No interrupt processing)
×: Not used for HALT release.
−: As the highest priority level (interrupt request level) for a non-maskable interrupt is fixed to 7, this

combination is not available.
*1: Releases HALT after the warmup time has elapsed.
Note: When releasing HALT in an interrupt enabled state by using a level mode INT0 interrupt, maintain

high level on pin INT0 until interrupt processing begins. If pin INT0 changes to low level before
interrupt processing begins, interrupt processing cannot start correctly.

TMP95CU54A

2005-05-10 95CU54A-37

(Example of release from HALT mode)
Releasing HALT mode using the edge mode INT0 interrupt when the CPU is in RUN

mode:

TMP95CU54A

2005-05-10 95CU54A-38

(3) Operation in each mode

[1] RUN mode
In RUN mode, the system clock continues operating even after execution of the

HALT instruction. Only the CPU instruction execution operations stop.
In HALT mode, interrupt requests are sampled on the falling edge of the CLK signal.
All the external and internal interrupts can be used for releasing RUN mode. (See

Table 3.4.2, Halt Release Sources and Halt Release Operation.)
Figure 3.4.2 shows the timing example for releasing HALT mode using an interrupt.

Address Address + 2

Figure 3.4.2 Example of Timing for Releasing Halt by Interrupt (RUN or IDLE2 Mode)

[2] IDLE2 mode
In IDLE2 mode, the system clock is supplied only to specific internal I/O. CPU

instruction execution halts.
In IDLE2 mode, the timing for releasing HALT mode by interrupt is the same as in

RUN mode.
External and internal interrupts, apart from INTWD/INTAD, can release IDLE2

mode. (See Table 3.4.2, Halt Release Sources and Halt Release Operation.)
Before entering HALT mode in IDLE2 mode, disable the watchdog timer (to prevent

the generation of a watchdog timer interrupt immediately after halt mode release).

TMP95CU54A

2005-05-10 95CU54A-39

[3] IDLE1 mode
In IDLE1 mode, only the internal oscillator operates. The system clock stops. The

CLK pin outputs high level.
The interrupt request sampling in HALT mode is asynchronous to the system clock.

However, the release (resumption of operation) is synchronous.
Release IDLE1 mode by an external interrupt (NMI, INT0). (See Table 3.4.2, Halt

Release Sources and Halt Release Operation.)

Figure 3.4.3 shows the timing example for releasing HALT mode by interrupt.

Address Address + 2

Figure 3.4.3 Example of Timing for Releasing HALT by Interrupt (IDLE1 Mode)

TMP95CU54A

2005-05-10 95CU54A-40

[4] STOP mode
In STOP mode, all internal circuits, including the internal oscillator, are halted. The

pin states in STOP mode differ according to the setting of the watchdog timer mode
register WDMOD<DRVE>. (For details on the WDMOD<DRVE> settings, see Figure
3.4.1). Table 3.4.3 shows the pin states in STOP mode.

Release STOP mode by an external interrupt (NMI, INT0). When releasing STOP
mode, system clock output starts after the elapse of the warmup time (as set in the
warmup counter) in order to stabilize the internal oscillator. Set the warmup time in
the WDMOD<WARM> register.

Figure 3.4.4 shows an example of the timing for releasing HALT by interrupt.

Address Address + 2

Figure 3.4.4 Example of Timing for Releasing HALT by Interrupt (STOP Mode)

TMP95CU54A

2005-05-10 95CU54A-41

Table 3.4.3 Pin States in Stop Mode

Pin Name Input/Output <DRVE> = 0 <DRVE> = 1
P00 to 07 Input mode

Output mode
Input/output (D0 to D7)

■
■
−

■
Output

−
P10 to 17 Input mode

Output mode
Input/output (D8 to D15)

■
■
−

■
Output

−
P20 to 27 Input mode

Output mode
Output (A16 to A23)

■
■
−

■
Output
Output

P30 Input mode
Output mode
Output (A8)

PU
■
−

PU
Output
Output

P31 to 37 Input mode
Output mode
Output (A9 to A15)

■
■
−

■
Output
Output

P40 to 47 Input mode
Output mode
Output (A0 to A7)

■
■
−

■
Output
Output

P50 (RD), P51 (WR) Output mode
Output (RD , WR)

■
−

Output
High level output

P52 to 55 Input mode
Output mode

PU*
PU

PU
Output

P56 (INT0) Input mode
Output mode
Input mode (INT0)

PU
PU

Input

PU
Output
Input

P57 (CLKOUT) Output mode
Output (CLKOUT)

PU
−

Output
High level output

P60 to 63 Input mode
Output mode

−
−

Input
Output

P70 to 75 Input mode
Output mode

−
−

Input
Output

P80, 83, 86 Input mode
Output mode

PU*
PU*

PU
Output

P81, 82, 84, 85, 87 Input mode
Output mode

PU*
PU

PU
Output

P90 to 97 Input mode
Output mode

−
−

Input
Output

PA0 to 7 (AN0 to 7) Input
Input (ADTRG)

■
−

■
Input

NMI Input Input Input

CLK Output − High level output
RESET Input Input Input

EA Input Fixed to High level Fixed to High level

16AM8/ Input Fixed to High level Fixed to High level

X1 Input − −
X2 Output High level High level

−: Indicates that input is invalid for an input pin or a pin in input mode. Also, that the pin is set to high impedance for an output
pin or a pin in output mode.

Input: The input gate is functioning. To prevent the input pin from floating, fix the input voltage to low or high.
Output: Output state
PU: Programmable pull-up pin. The input gate is functioning. Pins without pull-up set must be fixed to prevent through current.
PU*: Programmable pull-up pin. The input gate is disabled. A through current does not occur even if high impedance is set.
■: The input gate continues to operate if the HALT instruction is executed and the CPU is halted at the port register address

value. To prevent a through current in this case, either fix the pin or ensure by software that the situation does not occur. In
other cases, input is invalid.

X: Cannot be used.
Note: The port register controls the programmable pull-up. However, if the function is set for a pin shared with an output function

(eg, TxD0), the pull-up selection for the pin depends on the output function data. For pins that are shared with input functions,
the port register setting alone determines whether or not a pull-up resistor is used.

TMP95CU54A

2005-05-10 95CU54A-42

3.5 Port Functions

TMP95CU54A has a total of 81 bits for input/output ports.
As well as being used as general-purpose I/O ports, port pins are also used for internal CPU

and built-in I/O functions. Table 3.5.1 lists port pin functions; Table 3.5.2, pin settings.

Table 3.5.1 Port Pin Functions

TMP95CU54A

2005-05-10 95CU54A-43

Table 3.5.2 Port Pin Setting Methods (1/3)

1

TMP95CU54A

2005-05-10 95CU54A-44

Table 3.5.2 Port Pin Setting Methods (2/3)

0

TMP95CU54A

2005-05-10 95CU54A-45

Table 3.5.2 Port Pin Setting Methods (3/3)

TMP95CU54A

2005-05-10 95CU54A-46

3.5.1 Port 0 (P00 to P07)

Port 0 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output.

In addition to functioning as a general-purpose input/output port, port 0 also functions as
the data bus (D0 to D7). The port 0 control register P0CR sets the pins as inputs or
outputs.

A reset sets all the bits of the P0CR register to 0, and sets all pins to input mode.
When external memory is accessed, the port automatically functions as the data bus (D0

to D7) and all bits of P0CR are cleared to 0.

Figure 3.5.1 Port 0 (P00 to P07)

Figure 3.5.2 Register for Port 0

TMP95CU54A

2005-05-10 95CU54A-47

3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output.

In addition to functioning as a general-purpose input/output port, port 1 also functions as
a data bus (D8 to D15). The port 1 control register P1CR and function register P1FC set
the port 1 functions.

Reset sets all the bits of the P1 output latch register and all bits of the P1CR and P1FC
registers to 0, and sets port 1 to input mode.

Figure 3.5.3 Port 1 (P10 to P17)

TMP95CU54A

2005-05-10 95CU54A-48

Figure 3.5.4 Register for Port 1

TMP95CU54A

2005-05-10 95CU54A-49

3.5.3 Port 2 (P20 to P27)

Port 2 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output.

In addition to functioning as a general-purpose input/output port, port 2 also functions as
an address bus (A16 to A23). The port 2 control register P2CR and function register P2FC
set the port 2 functions.

Reset sets all the bits of the P2 output latch register and all bits of the P2CR and P2FC
registers to 0, setting port 2 to input mode.

Figure 3.5.5 Port 2 (P20 to P27)

TMP95CU54A

2005-05-10 95CU54A-50

Figure 3.5.6 Register for Port 2

TMP95CU54A

2005-05-10 95CU54A-51

3.5.4 Port 3 (P30 to P37)

Port 3 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output.

In addition to functioning as a general-purpose input/output port, port 3 also functions as
an address bus (A8 to A15). The port 3 control register P3CR and function register P3FC
set the port 3 functions.

Reset sets all the bits of the P3 output latch register and all bits of the P3CR and P3FC
registers to 0. Pin P30 is set to input mode with pull-up; P31 to P37 are set to input mode.

(1) Port 30 (A8)

In addition to being a general-purpose input/output port, port 30 also functions as an
address bus (A8).

Figure 3.5.7 Port 3 (P30)

TMP95CU54A

2005-05-10 95CU54A-52

(2) Port 31 to 37 (A9 to A15)
In addition to functioning as a general-purpose input/output port, port 31 to 37 also

functions as an address bus (A9 to A15).

Figure 3.5.8 Port 3 (P31 to P37)

TMP95CU54A

2005-05-10 95CU54A-53

Note: When setting the address bus (A15 to A8), first set P3CR, then P3FC.

Figure 3.5.9 Register for Port 3

TMP95CU54A

2005-05-10 95CU54A-54

3.5.5 Port 4 (P40 to P47)

Port 4 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output.

In addition to functioning as a general-purpose input/output port, port 4 also functions as
an address bus (A0 to A7). The port 4 control register P4CR and function register P4FC set
the port 4 functions.

Reset sets all the bits of the P4 output latch register and all bits of the P4CR and P4FC
registers to 0, setting port 4 to input mode.

Figure 3.5.10 Port 4 (P40 to P47)

TMP95CU54A

2005-05-10 95CU54A-55

Note: When setting the address bus (A7 to A0), first set P4CR, then P4FC.

Figure 3.5.11 Register for Port 4

TMP95CU54A

2005-05-10 95CU54A-56

3.5.6 Port 5 (P50 to P57)

Port 5 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output. However, P50, P51 and P57 are output-only ports.

In addition to functioning as a general-purpose input/output port, port 5 also has a CPU
control/status signal input/output function, a WAIT input function, an INT0 external
interrupt input function, and a CLKOUT output function. The port 5 control register P5CR
and function register P5FC set the port 5 functions.

Reset sets all the bits of the P5 output latch register and bit 7 of P5FC to 1 and clears all
bits of P5CR (bits 0, 1 and 7 are unused) and bits 0, 1, 2, 3 and 4 of P5FC (bits 5 and 6 are
unused) to 0. Pins P50 and P51 output 1 and P52 to P56 are set to input mode with
resistors pulled up and P57 output CLKOUT.

When P50 is set as the RD pin (when P5FC<P50F> = 1) when P5<P50> is cleared to 0,
the P50 RD signal is output even when an internal address area is accessed, and external
PSRAM (pseudo SRAM) can be refreshed. If <P50> is set to 1, the RD signal is output only
when an external area is accessed.

(1) Port 50 (RD)

In addition to functioning as a general-purpose output-only port, port 50 can also
function as the RD pin.

Figure 3.5.12 Port 5 (P50)

TMP95CU54A

2005-05-10 95CU54A-57

(2) Port 51 (WR)
In addition to functioning as a general-purpose output-only port, port 51 can also

function as the WR pin.

Figure 3.5.13 Port 5 (P51)

(3) Ports 52, 54 (HWR , BUSAK)
In addition to being general-purpose input/output ports, port 52 can also function as

the HWR pin, and port 54 can also function as the BUSAK pin.

Figure 3.5.14 Port 5 (P52, P54)

TMP95CU54A

2005-05-10 95CU54A-58

(4) Port 53 (BUSRQ)

In addition to being a general-purpose input/output port, port 53 also functions as
the BUSRQ pin.

Figure 3.5.15 Port 5 (P53)

TMP95CU54A

2005-05-10 95CU54A-59

(5) Port 55 (WAIT)
In addition to being a general-purpose input/output port, port 55 also functions as

the WAIT pin.

Figure 3.5.16 Port 5 (P55)

(6) Port 56 (INT0)
In addition to being a general-purpose input/output port, port 56 also functions as

the external interrupt request input INT0 pin.

Figure 3.5.17 Port 5 (P56)

TMP95CU54A

2005-05-10 95CU54A-60

(7) Port 57 (CLKOUT)
In addition to being a general-purpose output port, port 57 also functions as the

CLKOUT output pin.

Figure 3.5.18 Port 5 (P57)

TMP95CU54A

2005-05-10 95CU54A-61

Figure 3.5.19 Register for Port 5 (1/2)

TMP95CU54A

2005-05-10 95CU54A-62

Figure 3.5.19 Register for Port 5 (2/2)

TMP95CU54A

2005-05-10 95CU54A-63

3.5.7 Port 6 (P60 to P63)

Port 6 is a 4-bit general-purpose input/output port with each bit settable as an input or
output.

In addition to functioning as a general-purpose input/output port, port 6 also has a serial
expansion interface function (SS , MOSI, MISO and SCLK). The port 6 control register
P6CR and the port 6 function register P6FC set the functions.

Reset sets the P60 to P63 output latch to 1. Reset also clears all bits of the P6CR and
P6FC register to 0, setting port 6 to a general-purpose input port.

(1) Port 60 (SS)

In addition to being a general-purpose input/output port, port 60 also functions as
the SS pin.

(Note)

 Note: There is no Mode fault detection.

Figure 3.5.20 Port 6 (P60)

TMP95CU54A

2005-05-10 95CU54A-64

(2) Port 61, 62, 63 (MOSI, MISO, SCLK)
In addition to being general-purpose input/output ports, port 61 also functions as the

MOSI pin, port 62 also functions as the MISO pin, and port 63 also functions as the
SCLK pin.

Figure 3.5.21 Port 6 (P61, P62, P63)

TMP95CU54A

2005-05-10 95CU54A-65

(Note2)

Note2:There is no Mode fault detection. Set >P60F>, which is the enable/disable bit for Mode

fault detection, to “1” to disable the Mode fault detection function.

Figure 3.5.22 Register for Port 6

TMP95CU54A

2005-05-10 95CU54A-66

3.5.8 Port 7 (P70 to P75)

Port 7 is a 6-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as general-purpose input/output port pins, port 7 pins also
function as event count inputs for the 8-bit timer, outputs for the 8-bit timer, and INT1 to 4
inputs for the external interrupt function.

Port 7 control register P7CR and port 7 function register P7FC set the port 7 functions.
Reset clears all bits of the output latch register and P7CR to 0, setting all pins to input

mode.
To enable the timer output function, write 1 to the corresponding bits in both P7CR and

P7FC.

(1) Port 70, 73 (TI0/INT1, T14/INT3)
In addition to functioning as a general-purpose input/output port, port 70 can also

function as the event count input TI0 for timer 0 and as the external interrupt request
input INT1.

In addition to functioning as a general-purpose input/output port, port 73 can also
function as the event count input TI4 for timer 4 and as the external interrupt request
input INT3.

Caution when using INT1 and INT3 interrupts

Input is always enabled for the INT1 and INT3 external interrupt requests.
Caution is required if port 70 or 73 is used as a general-purpose input/output port or

a timer event count input while the INT1 and INT3 interrupt functions are in use.
This is because rising edges on these input/output signals generate interrupt requests.

Caution when using timer event count inputs TI0 and TI4

Input is always enabled for the timer event count inputs TI0 and TI4.
Caution is required if port 70 or 73 is used as a general-purpose input/output port or

an INT1 or INT3 interrupt during event counting based on TI0 or TI4. This is because
these input/output signals trigger an event count on the timer.

Figure 3.5.23 Port 7 (P70, P73)

TMP95CU54A

2005-05-10 95CU54A-67

(2) Port 71, 74 (TO1, TO5)
In addition to functioning as a general-purpose input/output port, port 71 also

functions as TO1 for output of timers 0 and 1. In addition to functioning as a
general-purpose input/output port, port 74 also functions as TO5 for output of timers 4
and 5.

Figure 3.5.24 Port 7 (P71, P74)

TMP95CU54A

2005-05-10 95CU54A-68

(3) Port 72, 75 (TO3/INT2, TO7/INT4)
In addition to functioning as a general-purpose input/output port, port 72 also

functions as TO3 for output of timers 2 and 3 and as the external interrupt request
input INT2.

In addition to functioning as a general-purpose input/output port, port 75 also
functions as TO7 for output of timers 6 and 7 and as the external interrupt request
input INT4.

Caution when using INT2 or INT4 interrupts

Input is always enabled for the INT2 and INT4 external interrupt requests.
Caution is required if port 72 or 75 is used as a general-purpose input/output port or

timer event count input port while the INT2 and INT4 interrupt functions are in use.
This is because rising edges on these input/output signals generate interrupt requests.

Figure 3.5.25 Port 7 (P72, P75)

TMP95CU54A

2005-05-10 95CU54A-69

Figure 3.5.26 Register for Port 7

TMP95CU54A

2005-05-10 95CU54A-70

3.5.9 Port 8 (P80 to P87)

Port 8 is an 8-bit general-purpose input/output port with each port bit settable as an
input or output.

In addition to being a general-purpose input/output port, port 8 also functions as a serial
channel TxD output, RxD input, SCLK input/output, and CAN controller Tx output and Rx
input.

Port 8 control register P8CR and port 8 function register P8FC set the functions.
Reset sets all bits of the output latch to 1. It also clears all bits of the P8CR and P8FC

registers to 0, setting port 8 to input mode using pull-up resistors.
Port pins 80 and 83 have a programmable open drain function.

(1) Ports 80, 83, 86 (TxD0, TxD1, Tx)

Ports 80, and 83 function as the serial channel TxD0 and TxD1 outputs as well as
input/output ports.

These ports have a programmable open drain function. Setting open drain disables
pull-up.

Port 86 functions as the CAN controller Tx output as well as input/output ports.

Figure 3.5.27 Port 8 (P80, P83, P86)

TMP95CU54A

2005-05-10 95CU54A-71

(2) Port 81, 84, 87 (RxD0, RxD1, Rx)
Ports 81 and 84 function as serial channel RxD0 and RxD1 inputs as well as

input/output ports.
Port 87 functions as the CAN controller Rx input as well as input/output port.

Figure 3.5.28 Port 8 (P81, P84, P87)

(3) Port 82 (SCLK0/CTS0)
Port 82 functions as the SCLK0 input/output for serial channel 0 as well as an

input/output port. The port also functions as the CTS0 input.

Figure 3.5.29 Port 8 (P82)

TMP95CU54A

2005-05-10 95CU54A-72

(4) Port 85 (SCLK1/CTS1)
Port 85 functions as the SCLK1 input/output for serial channel 1 as well as an

input/output port. The port also functions as the CTS1 input.

Figure 3.5.30 Port 8 (P85)

TMP95CU54A

2005-05-10 95CU54A-73

Figure 3.5.31 Register for Port 8 (1/2)

TMP95CU54A

2005-05-10 95CU54A-74

Figure 3.5.31 Register for Port 8 (2/2)

TMP95CU54A

2005-05-10 95CU54A-75

3.5.10 Port 9 (P90 to P96)

Port 9 is a 7-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to its input/output port functions, port 9 also functions as a 16-bit timer input
clock pin, a 16-bit timer output pin, and inputs for INT5 to 8. Port 9 control register P9CR
and port 9 function register P9FC set the port 9 functions.

A reset clears all bits of the P9 output latch and all bits of the P9CR and P9FC registers
to 0, setting port 9 to input mode.

To enable the timer output function, write 1 to the corresponding bit in P9FC.

TMP95CU54A

2005-05-10 95CU54A-76

(1) Ports 90, 91, 94, 95 (TI8/INT5, TI9/INT6, TIA/INT7, TIB/INT8)
In addition to functioning as general-purpose input/output ports, ports 90 and 91 can

also function as timer 8 event count inputs TI8 and TI9, and as external interrupt
request inputs INT5 and INT6. Ports 94 and 95, in addition to being general-purpose
input/output ports, can also function as the timer 9 event count inputs TIA and TIB,
and as the external interrupt request inputs INT7 and INT8.

Caution when using INT5 to INT8 interrupts

Input is always enabled for the INT5 to INT8 external interrupt requests.
Caution is required if ports 90, 91, 94, or 95 are used as general-purpose

input/output ports or timer event count inputs while the INT5 to INT8 interrupt
functions are in use. This is because rising or falling edges on these input/output
signals generate interrupt requests.

Caution when using timer event count inputs TI8 to TIB

Input is always enabled for timer event count inputs TI8 to TIB.
Caution is required if ports 90, 91, 94, or 95 are used as general-purpose

input/output ports or INT5 to INT8 interrupts during event counting based on TI8 to
TIB. This is because these input/output signals trigger an event count on the timer.

Figure 3.5.32 Port 9 (P90, P91, P94, P95)

TMP95CU54A

2005-05-10 95CU54A-77

(2) Ports 92, 93 (TO8, TO9)
In addition to operating as a general-purpose input/output port, port 92 also

functions as the TO8 output for timer 8. Port 93 operates as the TO9 output for timer 8
as well as functioning as a general-purpose input/output port.

Figure 3.5.33 Port 9 (P92, P93)

TMP95CU54A

2005-05-10 95CU54A-78

(3) Port 96 (TOA/TOB)
In addition to functioning as a general-purpose input/output port, port 96 also

functions as the TOA and TOB outputs for timer 9.

Figure 3.5.34 Port 9 (P96)

TMP95CU54A

2005-05-10 95CU54A-79

Figure 3.5.35 Register for Port 9

TMP95CU54A

2005-05-10 95CU54A-80

3.5.11 Port A (PA0 to PA7)

Port A is an 8-bit input-only port with analog input pins (AN0 to AN7). The PA3 pin also
functions as the external trigger input for analog conversion (ADTRG).

Figure 3.5.36 Port A (PA0 to PA7)

Figure 3.5.37 Register for Port A

TMP95CU54A

2005-05-10 95CU54A-81

3.6 Bus Width/Wait Controller

In the TMP95CU54A, four user-specifiable address area blocks can be set. The data bus
width and number of waits can be set independently for each address area and for others.

Address areas 0 to 3 are set by a combination of memory start address registers MSAR0 to
MSAR3 and memory address mask registers MAMR0 to MAMR3.

Use bus width/wait control registers WAITC0 to WAITC3 and WAITCEX to specify the
master enable, data bus width, and number of waits for each address area.

The input pins controlling these states are the bus wait request pin (WAIT), the external
data bus selection pin (16/8ΑΜ), and the external memory access pin (EA). (See 3.1.2,
External Data Bus Width Selection Function.)

3.6.1 Specifying address areas

Address areas 0 to 3 are specified using the start address registers MSAR0 to MSAR3
and memory address mask registers MAMR0 to MAMR3.

At each bus cycle, a compare operation is performed to determine if the address on the
bus specifies a location in address areas 0 to 3. If the result of the comparison is a match,
this indicates an access to the corresponding address area. In this case, the bus cycle
operates in accordance with the settings in bus width/wait control register WAITC0 to
WAITC3. If the result of the comparison is not a match, this indicates an access to another
address area. In this case, the bus cycle operates in accordance with the settings in bus
width/wait control register WAITCEX. (See 3.6.2, Bus Width/Wait Control Register.)

TMP95CU54A

2005-05-10 95CU54A-82

(1) Memory Start Address Registers
Figure 3.6.1 shows the memory start address registers. Memory start address

registers MSAR0 to MSAR3 set the start address for address areas 0 to 3. Set the
upper eight bits (A23 to A16) of the start address in <S23:16>. The lower 16 bits of the
start address (A15 to A0) are permanently set to 0. Accordingly, the start address can
only be set in 64 Kbyte increments, starting from 000000H. Figure 3.6.2 shows the
relationship between the start address and the start address register value.

Figure 3.6.1 Memory Start Address Register

Figure 3.6.2 Relationship Between Start Address and Start Address Register Value

TMP95CU54A

2005-05-10 95CU54A-83

(2) Memory address mask registers
Figure 3.6.3 shows the memory address mask registers. Memory address mask

registers MAMR0 to MAMR3 are used to set the size of address areas 0 to 3 by
specifying a mask for each bit of the start address set in memory start address
registers MSAR0 to MSAR3. The compare operation used to determine if an address is
in the address areas 0 to 3 is only performed for bus address bits corresponding to bits
set to 0 in these registers.

Also, the address bits that can be masked by MAMR0 to MAMR3 differ between
address areas 0 to 3. Accordingly, the size that can be set for each area is different.

Figure 3.6.3 Memory Address Mask Registers

TMP95CU54A

2005-05-10 95CU54A-84

(3) How to set memory start addresses and address areas
Figure 3.6.4 shows an example of specifying a 64 Kbyte address area starting from

010000H using address area 0.
Set 01H in memory start address register MSAR0<S23:16> (corresponding to the

upper 8 bits of the start address). Next, calculate the difference between the start
address and the anticipated end address (01FFFFH) based on the size of address area
0. Bits 20 to 8 of the result correspond to the mask value to be set for address area 0.
Setting this value in memory address mask register MAMR0<V20:8> sets the area size.
This example sets 07H in MAMR0 to specify a 64 Kbyte area.

Figure 3.6.4 Address Area 0 Setting Example

After a reset, MSAR0 to MSAR3 and MAMR0 to MAMR3 are set to FFH.
WAITC0<B0E>, WAITC1<B1E>, and WAITC3<B3E> are reset to 0. This disables
address areas 0, 1 and 3. However, as WAITC2 <B2M> is reset to 0 and
WAITC2<B2E> to 1, address area 2 is enabled from 000CA0H to 0021FFH and from
002340H to FE7FFFH. Also, the bus width and number of waits specified in
WAITCEX are used for accessing addresses outside the specified address areas 0 to 3.
(See 3.6.2 Bus Width/Wait Control Register.)

TMP95CU54A

2005-05-10 95CU54A-85

(4) Address area size specifications
Table 3.6.1 shows the relationship between address area and area size. ∆ indicates

areas that cannot be set by memory start address register and memory address mask
register combinations. When setting an area size using a combination indicated by ∆,
set the start address in the desired steps starting from 000000H.

If the address area 2 is set to 16M-byte or if two or more areas overlap, the smaller
address area number has the higher priority.

Example: When setting address area 0 as a 128 Kbyte area:

[1] Available start addresses

[2] Unavailable start addresses

Table 3.6.1 Address Area and Area Size

Size (bytes)

Address area
256 512 32 K 64 K 128 K 256 K 512 K 1 M 2 M 4 M 8 M

0 O O O O ∆ ∆ ∆ ∆ ∆
1 O O O ∆ ∆ ∆ ∆ ∆ ∆
2 O O ∆ ∆ ∆ ∆ ∆ ∆ ∆
3 O O ∆ ∆ ∆ ∆ ∆ ∆ ∆

TMP95CU54A

2005-05-10 95CU54A-86

3.6.2 Bus Width/Wait Control Registers

Figure 3.6.5 lists the bus width/wait control registers. The master enable/disable, data
bus width, and number of wait states for each address area 0 to 3 and others are set in their
respective bus width/wait control registers, WAITC0 to WAITC3 and WAITCEX.

Figure 3.6.5 Bus Width/Wait Control Registers

TMP95CU54A

2005-05-10 95CU54A-87

(1) Master enable bits
Bit 7 (<B0E>, <B1E>, <B2E>, and <B3E>) of the bus width/wait control registers is

the master bit used to enable or disable settings for the address area. Writing 1 to the
bit enables the settings. Reset disables (sets to 0) <B0E>, <B1E>, and <B3E>, and
enables (sets to 1) <B2E>.

(2) Selection of data bus width
Bit 3 (<B0BUS>, <B1BUS>, <B2BUS>, <B3BUS>, and <BEXBUS>) of the bus

width/wait control registers specifies the width of the data bus. Set 0 to access memory
when using a 16-bit data bus. Set 1 when using an 8-bit data bus.

Connect the EA and 16/8ΑΜ pins to VCC. This enables external memory to be
accessed using the data bus width set in the data bus width select bit.

This method of changing the data bus width depending on the address being
accessed is called dynamic bus sizing. For details of this bus operation, see Table 3.6.2.

Table 3.6.2 Dynamic Bus Sizing

TMP95CU54A

2005-05-10 95CU54A-88

(3) Wait control
Bits 2 to 0 (<B0W2:0>, <B1W2:0>, <B2W2:0>, <B3W2:0>, and <BEXW2:0>) of the

bus width/wait control registers specify the number of waits to insert.
The following types of wait operation can be specified using combinations of these

bits. Do not set combinations other than those listed in the table.

Table 3.6.3 Wait Operation Settings

Figures 3.6.6 and 3.6.7 show the timing for N = 0, 1 when the setting is 0 + NWAIT.
For the timings for settings other than 0 + NWAIT, see Figures 7.1 to 7.5 in 7. Basic

Timing, Chapter 3, TLCS-900/H CPU.
Reset sets these bits to 000 (2 WAIT).

TMP95CU54A

2005-05-10 95CU54A-89

Figure 3.6.6 0 + NWAIT Read/Write Cycle (When N = 0)

Figure 3.6.7 0 + NWAIT Read/Write Cycle (When N = 1)

TMP95CU54A

2005-05-10 95CU54A-90

(4) Bus width and wait control outside address areas 0 to 3
The bus width/wait control register WAITCEX controls the bus width and number of

waits when locations outside the four user-specified address area blocks 0 to 3 are
accessed. The WAITCEX register settings are always enabled for areas other than
address areas 0 to 3.

(5) 16M-byte area/address setting area selection
Setting the bus width/wait control register WAITC2<B2M> to 0 selects a 16M-byte

address area (000CA0H to 0021FFH, and 002340H to FE7FFFH) for address area 2.
Setting WAITC2<B2M> to 1 selects the address area specified by start address register
MSAR2 and address mask register MAMR2 for address area 2, and likewise for
address area 0, 1, and 3. Reset clears this bit to 0 and selects a 16M-byte address area.

(6) Bus width/wait control setting procedure
When using the bus width/wait control function, set the registers as follows:

[1] Set memory start address registers MSAR0 to MSAR3.
Set the start addresses of address areas 0 to 3.

[2] Set memory address mask registers MAMR0 to MAMR3.
Set the size of address areas 0 to 3.

[3] Set control registers WAITC0 to WAITC3.
Set the data bus width, number of waits, and master enable/disable for address

areas 0 to 3.
In the case of addresses, if one of the address areas 0 to 3 is set, but an internal I/O,

RAM or ROM area is specified, the CPU accesses the internal area.

Setting example:
This example sets the address area 0 as 010000H to 01FFFFH (64 Kbyte area) with

a 16-bit bus and zero waits:
MSAR0 = 01H.............. Start address: 010000H
MAMR0 = 07H............. Address area: 64 Kbyte
WAITC0 = 83H 16-bit data bus, zero waits, address area 0 settings enabled

TMP95CU54A

2005-05-10 95CU54A-91

3.7 8-Bit Timers

The TMP95CU54A incorporates eight 8-bit timers (timers 0 to 7).
Each timer can operate independently or be cascaded to form four 16-bit timers. The 8-bit

timers have the following four operating modes.
• 8-bit interval timer mode (8 channels)
• 16-bit interval timer mode (4 channels)
• 8-bit programmable square wave pulse generation (PPG: variable cycle, variable duty)

output mode (4 channels)
• 8-bit PWM (pulse width modulation: variable duty at fixed cycle) output mode

(4 channels)

Figure 3.7.1 shows the block diagram of 8-bit timers 0 and 1. The other 8-bit timers (timers 2
and 3, 4 and 5, and 6 and 7) have the same circuit configuration as timers 0 and 1.

Each 8-bit timer consists of an 8-bit up-counter, an 8-bit comparator, and an 8-bit timer
register. One timer flip-flop each (TFF1, TFF3, TFF5, and TFF7) is provided for the timer pairs,
consisting of timers 0 and 1, timers 2 and 3, timers 4 and 5, and timers 6 and 7.

Of the input clock sources for the 8-bit timers, the φT1, φT4, φT16, and φT256 internal clocks
are obtained from the 9-bit internal prescaler.

The 8-bit timers are controlled by nine control registers (T01MOD, T23MOD, T45MOD,
T67MOD, T02FFCR, T46FFCR, T8RUN, T16RUN, and TRDC).

These modes can be combined
(for example, four 8-bit timers and two 16-bit timers).

TMP95CU54A

2005-05-10 95CU54A-92

Figure 3.7.1 8-Bit Timer Block Diagram (Timers 0, 1)

TMP95CU54A

2005-05-10 95CU54A-93

3.7.1 8-Bit Timer Registers

Figure 3.7.2 shows the 8-bit timer registers. Setting these registers controls the
operation of the 8-bit timers.

Figure 3.7.2 Register for 8-Bit Timer (1/8)

TMP95CU54A

2005-05-10 95CU54A-94

Figure 3.7.2 Register for 8-Bit Timer (2/8)

TMP95CU54A

2005-05-10 95CU54A-95

Figure 3.7.2 Register for 8-Bit Timer (3/8)

TMP95CU54A

2005-05-10 95CU54A-96

Figure 3.7.2 Register for 8-Bit Timer (4/8)

TMP95CU54A

2005-05-10 95CU54A-97

Figure 3.7.2 Register for 8-Bit Timer (5/8)

TMP95CU54A

2005-05-10 95CU54A-98

Figure 3.7.2 Register for 8-Bit Timer (6/8)

TMP95CU54A

2005-05-10 95CU54A-99

Figure 3.7.2 Register for 8-Bit Timer (7/8)

TMP95CU54A

2005-05-10 95CU54A-100

Figure 3.7.2 Register for 8-Bit Timer (8/8)

TMP95CU54A

2005-05-10 95CU54A-101

3.7.2 Block Structure

(1) Prescaler
The prescaler is a 9-bit divider circuit that divides its supplied clock (4/fc) by 2n (n =

1, ..., 6, 9). The clock supplied to the prescaler is the CPU clock (fc) divided by four
(4/fc). The divided clock is used as the input clock for such functions as the 8-bit timers,
16-bit timer/event counters, and baud rate generator.

The prescaler count can be turned on and off using timer operation control register
T16RUN<PRRUN>. Setting T16RUN<PRRUN> to 1 starts the count.

Setting 0 clears the divided clock to zero and stops the prescaler. A reset clears
<PRRUN> to 0, clearing and stopping the prescaler.

Figure 3.7.3 Prescaler

TMP95CU54A

2005-05-10 95CU54A-102

(2) 8-bit up-counters
The 8-bit up-counters UC0 to 7 are the 8-bit binary counters for timers 0 to 7. The

up-counters count up on the internal or external clock selected by 8-bit timer mode
control registers T01MOD, T23MOD, T45MOD, and T67MOD. The 8-bit timer
operation control register T8RUN settings control the up-counter operation.

The available input clocks for UC0, 2, 4, 6 are the internal clocks φT1, φT4, or φ16.
UC0 and 4 can use the external clocks input from the timer input pin (TI0 and TI4)
signals.

The input clocks for UC1, 3, 5, 7 vary according to the operating mode.
In 16-bit timer mode, the overflow output signals of timer 0, 2, 4, 6 are used as the

input clocks.
In other than 16-bit timer mode, the available input clocks are internal clocks φT1,

φT16, φT256 or TOxTRG (timer 0, 2, 4, 6 match detect signals).
A reset clears T8RUN and stops UC0 to 7.

(3) 8-bit timer registers
The 8-bit timer registers are 8-bit registers for setting count values.
The comparator outputs a match detect signal when the value set in 8-bit timer

register TREG0 to 7 matches the 8-bit up-counter UC0 to 7 value. If 00H is set, the
match detect signal is output when the 8-bit up-counter overflows.

8-bit timer registers TREG0, 2, 4, 6 have a double-buffer configuration (each has a
dedicated register buffer).

Timer register double-buffer control registers TRDC<TR0/2/4/6DE> enable or
disable the double buffer. Setting <TR0/2/4/6DE> to 0 disables the double-buffer;
setting <TR0/2/4/6DE> to 1 enables the double buffer.

When the double buffer is enabled, data are transferred from the register buffer to
the timer register at a 2n − 1 overflow in pulse width modulation (PWM) mode, or at a
cycle compare match in programmable pulse generation (PPG) mode.

Always disable the double buffer in 8-bit and 16-bit interval timer modes.
A reset clears TRDC to 0 and disables the double buffer. When using the double

buffer, first write data to TREG0, 2, 4, 6 and set TRDC<TR0/2/4/6DE> to 1, then write
the next settings.

As TREG0 to 7 are undefined after a reset, set the registers before using the 8-bit
timers.

Figure 3.7.4 shows the configuration of timer registers 0, 2, 4, 6.

TMP95CU54A

2005-05-10 95CU54A-103

Figure 3.7.4 Configuration of Timer Registers 0, 2, 4, 6

Note: The timer register and register buffer are allocated to the same address in memory.
When TRDC<TR0/2/4/6DE> is set to 0, the same value is written to both the register buffer and the
timer register. When TRDC<TR0/2/4/6DE> is set to 1, the value is written to the register buffer only.
Accordingly, when writing the initial values to the timer registers, first disable the register buffers.

The timer registers are located in memory as follows.

All registers are write-only and therefore cannot be read.

TMP95CU54A

2005-05-10 95CU54A-104

(4) 8-bit comparator
The 8-bit comparator compares the 8-bit up-counter value with the 8-bit timer

register value and detects when the values are equal (match). If the values match, a
match detect signal is output, the 8-bit up-counter is cleared to zero, and an interrupt
is generated (INTT0 to 7).

(5) Timer flip-flops
The timer flip-flops (TFF1, TFF3, TFF5, TFF7) are inverted by a match detect signal

from the 8-bit comparator.
Timer flip-flop control registers T02FFCR<FF3IE>, <FF1IE>, and T46FFCR

<FF7IE>, <FF5IE> enable or disable inversion. Setting these bits to 0 disables
inversion; setting to 1 enables inversion.

The timer flip-flop values after a reset are undefined. Writing 01 or 10 to
T02FFCR<FF3C1, 0>, <FF1C1, 0>, or T46FFCR<FF7C1, 0>, <FF5C1, 0> sets the
timer flip-flop to 0 or 1. Writing 00 to the bits inverts the timer flip-flop value (software
inversion).

The TFF1, TFF3, TFF5, and TFF7 values can be output to the timer output pins TO1
(shared with P71), TO3 (shared with P72), TO5 (shared with P74), and TO7 (shared
with P75) respectively.

As the timer output pins also function as P71, P72, P74, and P75, be sure to set the
port 7 function register P7FC before performing timer output.

(See Figure 3.5.26 Register for Port 7)

TMP95CU54A

2005-05-10 95CU54A-105

3.7.3 Operation Description for Each Mode

(1) 8-bit interval timer mode
The eight interval timers 0 to 7 can be used independently. When setting the

functions and count data, first stop timers 0 to 7.
The following describes the example of timer 1 only.

[1] Generate interrupts at fixed intervals
Use T01MOD to select the operating mode and input clock. Set the interval time

(cycle) in TREG1. Enable interrupt INTT1 such that INTT1 is generated when a
match occurs between UC1 and TREG1. After setting the registers, start the
timer counting.

Table 3.7.1 shows the input clock selection.
Example: To generate a timer 1 interrupt every 33 µs (at fc = 24 MHz), set the

registers in the following order:

Note: X : Don’t care − : No change

Table 3.7.1 Selecting Interval and Input Clock for 8-Bit Timer Interrupt

TMP95CU54A

2005-05-10 95CU54A-106

[2] Generate square wave with 50%-duty cycle
To output a square wave with a duty cycle of 50%, set a count value equivalent to

half the desired cycle and TFF1 to invert on a match detect signal from timer 1
(T02FFCR<FF1IE, FF1IS> = 11).

Also, set P71 as a timer output (P7CR<P71C> = 1, P7FC<P71F> = 1)
Example: To output a square wave from pin TO1 with an interval of 2 µs (at fc =

24 MHz), set the registers in the following order:

Note: X : Don’t care − : No change

Figure 3.7.5 Square Wave (50% Duty Cycle) Output Timing Chart

TMP95CU54A

2005-05-10 95CU54A-107

[3] To count up at each timer 0 match output, set timer 1
Set 8-bit timer mode and the timer 0 comparator output as the timer 1 input

clock (T01MOD<T1CLK1, 0> = 00).

Figure 3.7.6 Using Timer 0 to Drive Timer 1 Count

(2) 16-bit interval timer mode
The 8-bit timers can be cascaded in pairs (timers 0 and 1, 2 and 3, 4 and 5, 6 and 7) to

create 16-bit interval timers.
Timers 0 and 1, 2 and 3, 4 and 5, 6 and 7 operate the same. Each pair can be used

independently.
The following describes the example of timers 0 and 1.
To cascade timers 0 and 1 to form a 16-bit interval timer, set the timer 0, 1 mode

control register T01MOD<T01M1, 0> to 01.
When 16-bit interval timer mode is set, the T01MOD<T1CLK1, 0> setting is ignored

and the timer 0 overflow output is forcibly set as the timer 1 input clock.
Table 3.7.2 shows the relationship between the timer (interrupt) interval and the

input clock selection.

Table 3.7.2 16-Bit Timer (Interrupt) Interval and Input Clock Selection

TMP95CU54A

2005-05-10 95CU54A-108

To set the timer interrupt interval, set the lower eight bits in timer register TREG0
and the upper eight bits in TREG1. Be sure to set TREG0 first (as entering data in
TREG0 temporarily disables compare, while entering data in TREG1 starts compare).

Example: To generate interrupt INTT1 every 0.33s at fc = 24 MHz, set the following
values in timer registers TREG0 and TREG1:

Using φT16 (= 5.33 µs @ 24 MHz) as a timer input clock
0.33 s ÷ 5.33 µs = 62500 = F424H

Therefore, set TREG1 to F4H, and TREG0 to 24H.
Whenever 8-bit up-counter UC0 and TREG0 match, the timer 0 comparator outputs

a match detect signal, but up-counter UC0 is not cleared. No INTT0 interrupt is
generated.

When up-counter UC1 and TREG1 match, at comparator timing the timer 1
comparator outputs a match detect signal.

When comparator match detect signals for both timer 0 and timer 1 are output at the
same time, up-counter 0 and up-counter 1 are cleared to 0 and interrupt INTT1 only is
generated. When the timer flip-flop inversion is enabled, the value of timer flip-flop
TFF1 is inverted.

Table 3.7.3 Differences Between 16-Bit Timer Mode and 8-Bit Timer Mode
(Timer 1 Input Clock: TO0TRG)

Example: When TREG1 = 04H and TREG0 = 80H:

Figure 3.7.7 Timer Output for 16-Bit Timer Mode

TMP95CU54A

2005-05-10 95CU54A-109

(3) 8-bit programmable pulse generation (PPG) output mode
Timers 0, 2, 4, or 6 can output square waves with variable frequencies and variable

duty (programmable pulse generation). The output pulse can be set to either active low
or active high. Timers 1, 3, 5, and 7 cannot be used in this mode.

Timer 0 outputs from pin TO1 (shared with pin P71), timer 2 outputs from pin TO3
(shared with pin P72), timer 4 outputs from TO5 (shared with pin P74), and timer 6
outputs from TO7 (shared with pin P75).

The following describes the example of timer 0. (Timers 2, 4, 6 operate the same as
timer 0.)

A programmable square wave can be output from pin TO1 by setting 8-bit
programmable square wave output mode and enabling inversion of the timer flip-flop
TFF1.

The TFF1 value is inverted by a match between 8-bit up-counter UC0 and TREG0,
and by a match with TREG1. UC0 is cleared by a match with TREG1.

In PPG mode, timer 1 cannot be used, but timer 1 up-counter UC1 must be run
(T8RUN<T1RUN> = 1).

Also, the TREG0 and TREG1 settings in PPG mode must satisfy the following
condition.

 (TREG0 setting value) < (TREG1 setting value)

Figure 3.7.8 8-Bit PPG Output Waveform

TMP95CU54A

2005-05-10 95CU54A-110

Figure 3.7.9 Block Diagram of 8-Bit PPG Output Mode

Enabling the timer register TREG0 double buffer in this mode shifts the register
buffer value to TREG0 when timer register TREG1 matches 8-bit up-counter UC0.

Using the double buffer facilitates handling of small duty waves (when changing the
duty).

Figure 3.7.10 Register Buffer Operation

TMP95CU54A

2005-05-10 95CU54A-111

Example: Output 1/4-duty 75 kHz-pulse (@ fc = 24 MHz)
Calculate the setting of the timer register.
Setting the frequency to 75 kHz creates a square wave with a cycle of t = 1/75

kHz = 13.3 µs.

Using φT1 = 0.33 µs (@ fc = 24 MHz) results in
 13.3 µs ÷ 0.33 µs = 40
Accordingly, set TREG1 = 40 = 28H.
Next, set the duty to 1/4 as follows:
 t × 1/4 = 13.3 µs × 1/4 = 3.3 µs
As with TREG1,
 3.3 µs ÷ 0.33 µs = 10
Accordingly, set TREG0 = 10 = 0AH.

Note: X : Don’t care − : No change

TMP95CU54A

2005-05-10 95CU54A-112

(4) 8-bit pulse width modulation (PWM) output mode
Only timers 0, 2, 4, 6 can be set to this mode, which allows up to four pulse width

modulation outputs with 8-bit resolution. Timers 1, 3, 5, and 7 can be used as 8-bit
timers.

In the case of timer 0, PWM is output to pin TO1 (shared with P71). In the case of
timers 2, 4, 6, PWM is output to pins TO3 (shared with P72), TO5 (shared with P74),
and TO7 (shared with P75) respectively.

Here, the example of timer 0 is used. (Timers 2, 4, 6 operate the same as timer 0.)
Timer output inversion occurs when the 8-bit up-counter UC0 setting and the timer

register TREG0 setting match, or when 2n − 1 (T01MOD specifies one of n = 6, n = 7, or
n = 8) counter overflow occurs. UC0 is cleared by the 2n − 1 counter overflow.

In addition, the following conditions must be satisfied when using 8-bit PWM output
mode:

 (Timer register setting) < (2n − 1 counter overflow setting)
 (Timer register setting) ≠ 0

Figure 3.7.11 8-Bit PWM Output Waveform

TMP95CU54A

2005-05-10 95CU54A-113

Figure 3.7.12 Block Diagram of 8-Bit PWM Output Mode

Enabling the TREG0 double-buffer in this mode shifts the register buffer value to
TREG0 when 2n − 1 counter overflow is detected.

Using the double buffer facilitates handling of small duty waves.

Figure 3.7.13 Register Buffer Operation

TMP95CU54A

2005-05-10 95CU54A-114

Example: Output following PWM waveform to pin TO1 (@ fc = 24 MHz)

To realize a PWM interval of 42.33 µs using φT1 = 0.33 µs (@ fc = 24 MHz):
 42.33 µs ÷ 0.33 µs = 127 = 2n − 1
 Accordingly, set n = 7.
 As the low level cycle is 30 µs, at φT1 = 0.33 µs,
 30 µs ÷ 0.33 µs = 90
 Accordingly, set TREG0 = 90 = 5AH.

Note: X : Don’t care − : No change

Table 3.7.4 shows the timer input clock source and the PWM interval determined by
the (2n − 1) counter.

Table 3.7.4 Setting of PWM Interval (@ fc = 24 MHz)

TMP95CU54A

2005-05-10 95CU54A-115

(5) Timer mode list
The 8-bit timers 0 to 7 can be set to 8-bit timer mode, 16-bit timer mode, 8-bit PPG

mode, or 8-bit PWM mode. Table 3.7.5 lists settings for the timer modes.

Table 3.7.5 Settings for All Timer Modes

TMP95CU54A

2005-05-10 95CU54A-116

3.8 16-Bit Timers/Event Counters

The TMP95CU54A incorporates two multi-function 16-bit timer/event counters (timers 8 and
9). Timers 8 and 9 have the same functions and can operate independently. The 16-bit timers
have the following three operating modes.

• 16-bit interval timer mode
• 16-bit event counter mode
• 16-bit programmable pulse generation (PPG) output mode

The capture function can also be used to perform the following operations.

• One-shot pulse output from the external trigger pulse
• Frequency measurement
• Pulse width measurement
• Time differential measurement

Also, the 16-bit timers can be used to output a signal with any phase difference.
Figure 3.8.1 is a block diagram of the 16-bit timer/event counters (timer 8). Timer 9 has the

same circuit configuration.
Each 16-bit timer/event counter consists of a 16-bit up-counter, a 16-bit comparator, a 16-bit

timer register, and a 16-bit capture register. Timers 8 and 9 each have two timer flip-flops
(TFF8/9 and TFFA/B).

Clock sources φT1, φT4, and φT16 input to the 16-bit timers are obtained from the internal
9-bit prescaler (see 3.7.2 (1), Prescaler).

The 16-bit timer/event counters are controlled by six control registers (T8MOD, T9MOD,
T8FFCR, T9FFCR, T16RUN, and T89CR).

TMP95CU54A

2005-05-10 95CU54A-117

Figure 3.8.1 16-Bit Timer Block Diagram (Timer 8)

TMP95CU54A

2005-05-10 95CU54A-118

3.8.1 16-Bit Timer/Event Counter Registers

Figure 3.8.2 shows the 16-bit timer/event counter related registers.
These register settings control the 16-bit timer/event counter operations.

Figure 3.8.2 16-Bit Timer/Event Counter Related Registers (1/5)

TMP95CU54A

2005-05-10 95CU54A-119

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (2/5)

TMP95CU54A

2005-05-10 95CU54A-120

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (3/5)

TMP95CU54A

2005-05-10 95CU54A-121

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (4/5)

TMP95CU54A

2005-05-10 95CU54A-122

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (5/5)

TMP95CU54A

2005-05-10 95CU54A-123

3.8.2 Block Structure

(1) 16-bit up-counters
16-bit up-counters UC8 and 9 are 16-bit binary counters for timers 8 and 9.
These up-counters count up on the external and internal clocks selected by 16-bit

timer mode control registers T8MOD and T9MOD. To control the up-counter
operations, use 16-bit timer operation control register T16RUN.

The UC8, 9 input clock is selected from either internal clocks φT1, φT4, and φT16, or
the external clocks input from the timer input pin (TI8 and TI9).

Any overflow from UC8 or 9 triggers interrupt request INTTO8 or INTTO9.
At a reset, T16RUN is cleared, and the prescaler and UC8, 9 are stopped.

(2) 16-bit timer registers
Each timer has two internal 16-bit timer registers for setting counters. A match

between these timer register settings and the value of the 16-bit up-counter UC8, 9
outputs a comparator match detect signal.

Data set to 16-bit timer registers TREG8, TREG9 and TREGA, TREGB use a 2-byte
data transfer instruction, or two 1-byte data transfer instructions; first for the lower
eight bits, then for the upper eight bits.

TREG8 to TREGB are write-only registers and therefore cannot be read.

TMP95CU54A

2005-05-10 95CU54A-124

Of the 16-bit timer registers, TREG8 and TREGA have a double-buffer configuration
(each has a register buffer).

Timer 8, 9 control register T89CR<DB8EN, DBAEN> enables/disables the double
buffer. Setting <DB8EN, DBAEN> to 0 disables the double buffer; setting <DB8EN,
DBAEN> to 1 enables the double buffer.

With the double buffer enabled, data are transmitted from the register buffer to the
timer register at a match between up-counter UC8 and TREG9, or between UC9 and
timer register TREGB.

As TREG8 to TREGB are undefined after a reset, when using a 16-bit timer write
the data first.

A reset clears T89CR to 0 and disables the double buffer. When using the double
buffer, write data to TREG8, TREGA, set T89CR<DB8EN, DBAEN> to 1, then write
the next data to the register buffer.

The 16-bit timer registers and register buffers are allocated to the same addresses in
memory. When T89CR<DB8EN, DBAEN> is set to 0, the same value is written to the
timer register and register buffer.

When <DB8EN, DBAEN> is set to 1, the value is written to the register buffer only.
Therefore, the register buffer must be disabled before writing the initial value to the
timer register.

(3) Capture register
The capture register is a 16-bit register for latching the 16-bit up-counter UC8, 9

value.
When reading the capture register, use a 2-byte data load instruction, or two 1-byte

data load instructions; first to read the lower eight bits, then to read the upper eight
bits.

CAP1 to CAP4 are read-only registers and cannot be written by software.

TMP95CU54A

2005-05-10 95CU54A-125

(4) Capture input control
The capture input control circuit controls the timing of the latching of the 16-bit

up-counter UC8, 9 value to capture registers CAP1, CAP2, CAP3, and CAP4. Set the
capture register latch timing with the timer 8, 9 mode control registers
T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0>.

The following describes the latch timing setting and operation.

• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 00:
The capture function is disabled. A reset also disables the capture function.

• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 01:
On the external input rising edge of TI8 (shared with P90/INT5) and TIA (shared
with P94/INT7), capture register CAP1, CAP3 loads the up-counter value. On the
external input rising edge of TI9 (shared with P91/INT6) and TIB (shared with
P95/INT8), capture register CAP2, CAP4 loads the up-counter value. (Time
differential measurement)

• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 10:
On the TI8, TIA external input rising edge, capture register CAP1, CAP3 loads the
up-counter value. On the input falling edge, capture register CAP2, CAP4 loads
the up-counter value. Interrupt INT4, INT6 is generated on a falling edge in this
mode only. (Pulse width measurement)

• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 11:
On the timer flip-flop TFF1 rising edge, capture register CAP1, CAP3 loads the
up-counter value. On the falling edge, capture register CAP2, CAP4 loads the
up-counter value.
The UC8, 9 up-counter value can also be loaded to a capture register on a software
request. When 0 is written to T8MOD<CAP1IN>, T9MOD<CAP3IN>, the UC8, 9
up-counter value at that time is loaded to capture register CAP1, 3.
The prescaler must first be set to RUN (set T16RUN<PRRUN> = 1).

(5) Comparator
To detect a match, the 16-bit comparator compares the 16-bit up-counter UC8, 9 with

the 16-bit timer register TREG8, 9 and TREGA, B settings.
On detection of a match, the comparator outputs a match detect signal and generates

interrupts INTTR8, 9 or INTTRA, B from the respective 16-bit timer.
UC8 is cleared by a match between the UC8 value and the TREG9 value. UC9 is

cleared by a match between the UC9 value and the TREGB value. UC8, 9 clearing can
be disabled by setting the timer 8, 9 mode control registers T8MOD<CLE>,
T9MOD<CLE> to 0.

TMP95CU54A

2005-05-10 95CU54A-126

(6) Timer flip-flops
Timers 8 and 9 have two timer flip-flops each. The flip-flops of each timer have

different functions.
[1] TFF8, TFFA

Flip-flops TFF8 and TFFA are inverted by a match signal from the comparator
and a latch signal to the capture register.

In timer 8 and timer 9, two different capture operations and two types of match
detection can be specified as inversion triggers. Use bits 2 to 5 of the T8FFCR and
T9FFCR registers to set the inversion triggers.

[2] TFF9, TFFB
Timer flip-flops TFF9 and TFFB are inverted by a match signal from the

comparator and a latch signal to the capture register.
In timers 8 and 9, one type of capture operation and one type of match detection

can be specified as inversion triggers. Use bits 6 and 7 of the T8MOD and T9MOD
registers to set the inversion triggers.

After a reset, the timer flip-flop values are undefined. Writing 01 to T8FFCR

<TFF8C1, 0>, <TFF9C1, 0> or T9FFCR <TFFAC1, 0>, <TFFBC1, 0> sets the
timer flip-flop to 0; writing 10 to the bits sets the timer flip-flop to 1. Writing 00 to
the bits inverts the timer flip-flop value (software inversion).

The TFF8, TFF9, TFFA, and TFFB values can be output to timer output pins
TO8 (shared with P92), TO9 (shared with P93), TOA (shared with P96), and TOB
(shared with P96) respectively.

As the timer output pins also function as P92, P93, and P96, set port 9 function
register P9FC before performing timer output. (See Figure 3.5.35 Register for
Port 9)

TMP95CU54A

2005-05-10 95CU54A-127

3.8.3 Operation Description for Each Mode

(1) 16-bit interval timer mode
Interval timers 8 and 9 can be used independently as 16-bit interval timers. The

following describes the example of timer 8 only.
Example: Generate interrupts at fixed intervals
To generate timer interrupts at fixed intervals, set the interval time (cycle) in 16-bit

timer register TREG9 and use interrupt INTTR9.
Set the registers as follows.

Note: X : Don’t care − : No change

(2) 16-bit event counter mode
Timers 8 and 9 can be set to operate as event counters by setting external inputs TI8

and TIA as the timer clock sources. The following describes timer 8 only.
The 16-bit up-counter UC8 counts up on the rising edge of the TI8 input. The count

value can be read by performing a software capture and reading the capture value.
Timer input pin TI8 is shared with P90. However, there is no selection function.

Therefore, event counter operation can be performed at any time by setting timer 8 to
operating state. Set the registers as follows.

Note 1: X : Don’t care − : No change
Note 2: The prescaler must also be running when using a 16-bit timer as an event counter

(T16RUN<PRRUN> = 1).

TMP95CU54A

2005-05-10 95CU54A-128

(3) 16-Bit programmable pulse generation (PPG) output mode
Timers 8 and 9 can output a square wave with a user-specified frequency and duty

(programmable square wave). The output pulse can be either active-low or active-high.
Timer 8 outputs a square wave from pin TO8 (shared with P92) ; timer 9, from TOA

(shared with P96).
The following describes timer 8 only.
A programmable pulse (square wave) can be output from pin TO8 by triggering

inversion of timer flip-flop TFF8 when a match occurs between the 16-bit up-counter
UC8 and TREG8, or between UC8 and TREG9. The TREG8 and TREG9 settings must
satisfy the following condition:

 (TREG8 setting) < (TREG9 setting)

Figure 3.8.3 16-Bit Programmable Pulse Generation (PPG) Output Waveform

Enabling the TREG8 double-buffer in this mode shifts the value of register buffer 8
to TREG8 when TREG9 matches UC8. Using the double-buffer facilitates handling of
small duty waves.

Figure 3.8.4 Register Buffer Operation

TMP95CU54A

2005-05-10 95CU54A-129

Figure 3.8.5 is a block diagram of 16-bit PPG output mode.

Figure 3.8.5 16-Bit PPG Output Mode Block Diagram

In 16-bit PPG output mode, set the registers as follows.

Note: X : Don’t care − : No change

TMP95CU54A

2005-05-10 95CU54A-130

(4) Example of capture function application
Use the capture function to realize many applications, including the following

examples.

[1] One-shot pulse output from the external trigger pulse
[2] Frequency measurement
[3] Pulse width measurement
[4] Time differential measurement

The following describes these applications based on timer 8.
[1] One-shot pulse output from external trigger pulse

Obtain one-shot pulse output from the external trigger pulse as follows.
Set 16-bit up-counter UC8 to free-running count-up using an internal clock.
Input the external trigger pulse from pin TI8. Load the up-counter value to

capture register CAP1 on the rising edge of the external trigger pulse using the
capture function.

Interrupt INT5 is generated on the rising edge of the external trigger pulse. Add
the value of capture register CAP1 at this interrupt (c) to the delay time (d), and
set timer register TREG8 to the sum of these values (c + d). Add the pulse width of
the one-shot pulse (p) to TREG8, and set timer register TREG9 to the result (c + d
+ p).

In addition, set the timer 8 flip-flop control register T8FFCR<EQ9T8, EQ8T8>
to 11 and enable the trigger to invert timer flip-flop TFF8 when a match occurs
between UC8 and TREG8 or UC8 and TREG9. Then, after output of the one-shot
pulse, set the trigger back to disabled state during INTTR9 interrupt processing.

The (c), (d), and (p) notation above corresponds to c, d, and p in Figure 3.8.6,
One-Shot Pulse Output from External Trigger Pulse (With Delay).

Figure 3.8.6 One-Shot Pulse Output from External Trigger Pulse (With Delay)

TMP95CU54A

2005-05-10 95CU54A-131

Example: On pin TI8, output 2ms one-shot pulse with 3ms-delay after external
trigger pulse.

Note: X : Don’t care − : No change

If delay time is not required, invert timer flip-flop TFF8 by loading capture
register 1 (CAP1). Set timer register TREG9 to the sum of the one-shot pulse
width (p) and the value of CAP1 at interrupt INT5 (c) (c + p). Set the TFF8
inversion on a match between TREG9 and UC8, and select inversion enable. On
interrupt INTTR9, disable the TFF8 inversion.

TMP95CU54A

2005-05-10 95CU54A-132

Figure 3.8.7 External Trigger Pulse One-Shot Pulse Output (No Delay)

[2] Frequency measurement
The frequency of an external clock can be measured by the capture function.
The frequency is measured by combining the 8-bit timers (timers 0, 1) in 16-bit

event counter mode. (Timers 0 and 1 are used to set the measuring time by
inverting TFF1.)

Select the TI8 input as the timer 8 count clock and count timer 8 on the external
clock input. Set timer 8 mode control register T8MOD<CAP12M1, 0> to 11. This
setting loads the counter value of 16-bit up-counter UC8 into capture register
CAP1 on the rising edge of timer flip-flop TFF1. It also loads the counter value
into capture register CAP2 on the falling edge of timer flip-flop TFF1. TFF1 is the
timer flip-flop of the 8-bit timers (timers 0, 1).

Based on the measuring time, the frequency is calculated from the difference
between capture registers CAP1 and CAP2 at the 8-bit timer interrupts (INTT0 or
INTT1).

Figure 3.8.8 Frequency Measurement

For example, if TFF1 (8-bit timer flip-flop) is set to 1 for 0.5s, and the difference
between CAP1 and CAP2 is 100, the frequency is 100 ÷ 0.5 s = 200 Hz.

TMP95CU54A

2005-05-10 95CU54A-133

[3] Pulse width measurement
The high-level width of an external pulse can be measured using the 16-bit timer

capture function.
To measure the pulse width, first set 16-bit up-counter UC8 to operate as a

free-running up-counter driven by an internal clock. Using the capture function,
load the up-counter value into capture registers CAP1 and CAP2 on the rising and
falling edges respectively of the external pulse being measured on the TI8 pin.

Using these settings, the high-level pulse width can be calculated during INT5
interrupt processing by multiplying the difference between CAP1 and CAP2 by the
internal clock cycle.

For example, if the difference between CAP1 and CAP2 is 100 and the internal
clock cycle is 0.8 µs, the pulse width is 100 × 0.8 µs = 80 µs.

Caution is required when the width of the pulse being measured exceeds the
maximum UC8 count time (which is determined by the clock source). Software
processing is required in this case.

Figure 3.8.9 Pulse Width Measurement

Note: Measure pulse width by setting the timer 8 mode control register T8MOD<CAP12M1, 0> to 10.
External interrupt INT5 is generated on the falling edge of the TI8 input pin. At other settings, INT5
is generated on the rising edge of TI8.

It is also possible to measure the width of low level external pulses. In this case,

the pulse width is calculated during the interrupt processing for the second INT5
interrupt by multiplying the internal clock cycle by the difference between the
value of C2 at the first INT5 interrupt and the value of C1 at the second INT5
interrupt. However, as the first C2 value has been overwritten by the time of the
second INT5 interrupt, the C2 value must be saved during processing of the first
INT5 interrupt.

TMP95CU54A

2005-05-10 95CU54A-134

[4] Time difference measurement
The time difference between two events can be measured using the 16-bit timer

capture function.
To measure time difference, first set the 16-bit up-counter UC8 to operate as a

free-running up-counter driven by an internal clock. Load the value of up-counter
UC8 into capture register CAP1 on a rising edge detected on the TI8 pin input
pulse. Interrupt INT5 is generated at this time.

Similarly, on a rising edge detected on the TI9 pin input pulse, load the
up-counter UC8 value into capture register CAP2. Interrupt INT6 is generated at
this time.

When both values have been loaded into the capture registers, calculate the time
difference by multiplying the difference between CAP2 and CAP1 by the internal
clock cycle.

Figure 3.8.10 Time Difference Measurement

TMP95CU54A

2005-05-10 95CU54A-135

(5) Phase output (only available on timer 8)
Signals with a user-specified phase difference can be output using the 16-bit timer.
Select an internal clock as the clock source and set the 16-bit up-counter UC8 to

free-running. Set the phase difference in 16-bit timer registers TREG8 and TREG9,
set timer flip-flops TFF8 and TFF9 to invert when a match is detected for TREG8 and
TREG9, and output the flip-flop values from TO8 and TO9.

Figure 3.8.11 Phase Output

Table 3.8.1 lists the cycles (counter overflow times) that can be set for each clock
source.

Table 3.8.1 16-Bit Up-Counter Overflow Times

TMP95CU54A

2005-05-10 95CU54A-136

3.9 Serial Channels

The TMP95CU54A has two internal serial input/output channels. The serial channels have
the following four operating modes.
• I/O interface mode

Mode 0: Can be used to expand the I/O by sending and receiving I/O data
and the associated synchronizing signal (SCLK).

• Universal asynchronous receiver transmitter (UART) mode
Mode 1: Send/receive data length: 7 bits
Mode 2: Send/receive data length: 8 bits
Mode 3: Send/receive data length: 9 bits

A parity bit can be added in modes 1 and 2. Mode 3 has a wake-up function that allows a

master controller to activate slave controllers via a serial link (multi-controller system).

TMP95CU54A

2005-05-10 95CU54A-137

Figure 3.9.1 Block Diagram of Serial Channel 0

TMP95CU54A

2005-05-10 95CU54A-138

3.9.1 Serial Channel Registers

Each serial channel is controlled by three control registers (SC0CR, SC0MOD, and
BR0CR in the case of channel 0). Data sent and received are stored in the serial
send/receive buffer register in each channel (SC0BUF in the case of channel 0).

(1) Serial channel 0

Figure 3.9.2 Serial Channel Related Register (1/6)

TMP95CU54A

2005-05-10 95CU54A-139

Figure 3.9.2 Serial Channel Related Register (2/6)

TMP95CU54A

2005-05-10 95CU54A-140

Figure 3.9.2 Serial Channel Related Registers (3/6)

TMP95CU54A

2005-05-10 95CU54A-141

(2) Serial channel 1

Figure 3.9.2 Serial Channel Related Register (4/6)

TMP95CU54A

2005-05-10 95CU54A-142

Figure 3.9.2 Serial Channel Related Register (5/6)

TMP95CU54A

2005-05-10 95CU54A-143

Figure 3.9.2 Serial Channel Related Registers (6/6)

TMP95CU54A

2005-05-10 95CU54A-144

3.9.2 Block Structure

As serial channels 0 and 1 operate identically, the following uses channel 0 as an
example.

(1) Serial transfer clock generator circuit

The serial transfer clock generator circuit generates SIOCLK (internal signal),
which is the send/receive basic clock. To generate SIOCLK, select the clock source
required for the generation.
[1] I/O interface mode

As the clock source, select either baud rate generator 0, or SCLK0 from an
external source. Set the clock source in bit 0 (<IOC>) of serial channel 0 control
register SC0CR.

When baud rate generator 0 is selected (<IOC> = 0), this circuit generates
SIOCLK by dividing the output of the baud rate generator by 2.

When external SCLK0 is selected (<IOC> = 1), SIOCLK is set to the same value
as the external source.

[2] UART mode
In addition to the clock sources in I/O interface mode, the comparator output of

timer 2 and the internal clock φ1 (2/fc) can also be selected as clock sources.
Bits 1 and 0 of serial channel 0 mode control register SC0MOD<SC1, 0> select

the clock source. SIOCLK is set to the same value as the selected clock source.

(2) Receive counter
The receive counter is a 4-bit binary counter used in UART mode.
The receive counter uses SIOCLK as the count clock to generate receive sampling

clock RxDCLK(internal signal).

(3) Receive control

[1] I/O Interface mode
In I/O interface mode, the receive data input to the RxD0 pin are sampled

synchronously with transfer clock SCLK0.
Setting serial channel 0 control register SC0CR<IOC> to 0 samples the received

data on the rising edge of SCLK0. Setting SC0CR<IOC> to 1 samples the data on
the rising or the falling edge of SCLK0 as determined by the setting of
SC0CR<SCLKS>.

[2] UART mode
The receive data are sampled bit by bit using RxDCLK, which is generated by

the receive counter. Each bit of data is sampled three times, using majority rule.
If two or more instances of the same value are detected among three samples, the
circuit recognizes the data as receive data. If the sampled data are 1, 0, 1, for
example, the data are evaluated as 1; if 0, 0, 1, the data are evaluated as 0.

TMP95CU54A

2005-05-10 95CU54A-145

(4) Receive buffer
The receive buffer has a double-buffer configuration to prevent overrun error.

Receive buffer 1 stores the data received bit by bit.
When receive buffer 1 contains seven or eight bits of data, the data are transferred to

receive buffer 2 (SC0BUF), generating interrupt INTRX0.
Reading the data in receive buffer 2 clears the interrupt request flag

INTRX0<IRX0C>.
Even before the CPU reads the data in receive buffer 2, the next data can be received

and stored in receive buffer 1.
However, receive buffer 2 must be read before all bits of the next data frame are

received by buffer 1. If not, an overrun error occurs and the contents of receive buffer 1
are lost, although the contents of receive buffer 2 and the serial channel 0 control
register SC0CR<RB8> are preserved.

In 8-bit UART mode (mode 2) with parity added, the parity bit is stored in
SC0CR<RB8>. In 9-bit UART mode (mode 3), the MSB is stored in SC0CR<RB8>.

(5) Send counter

The send counter is a 4-bit binary counter used in UART mode.
The send counter uses SIOCLK as its count clock, generating send clock TxDCLK

(internal signals).

Figure 3.9.3 Send Clock Generation

(6) Send control

[1] I/O interface mode
In I/O interface mode, the TMP95CU54A outputs send data from the TxD0 pin

synchronously with transfer clock SCLK0.
Setting serial channel 0 control register SC0CR<IOC> to 0 outputs send data on

the rising edge of transfer clock SCLK0.
Setting SC0CR<IOC> to 1 outputs the send data on the rising or falling edge of

SCLK0 as determined by the setting of SC0CR<SCLKS>.
[2] UART mode

In UART mode, the send data are output synchronously with the rising edge of
the TxDCLK send clock generated by the send counter.

(7) Send buffer

Send buffer (SC0BUF) outputs the send data written by the CPU, beginning with
the least significant bit.

When all bits are output, the empty send buffer generates interrupt request
INTTX0.

TMP95CU54A

2005-05-10 95CU54A-146

(8) Parity control
Parity bit addition can only be set in 7-bit UART mode (mode 1) and 8-bit UART

mode (mode 2).
When serial channel 0 control register SC0CR<PE> is set to 1, data can be sent with

a parity bit added. SC0CR<EVEN> selects even parity or odd parity.
A send operation automatically generates the parity bit determined by the send data.

In mode 1, SC0BUF<TB7> stores the parity bit; in mode 2, serial channel 0 mode
control register SC0MOD<TB8> stores the parity bit.

Set both <PE> and <EVEN> before writing the send data in SC0BUF.
When receiving, parity is calculated from the received data and compared with the

received parity bit. If the parities differ, a parity error occurs and parity error flag
SC0CR<PERR> is set to 1.

(9) Error flags

To improve the reliability of data reception, serial channel 0 control register SC0CR
contains the following three error flags.
[1] Overrun error <OERR>

When all bits of the next data frame have been received in receive buffer 1 while
valid data are stored in receive buffer 2 (SC0BUF), an overrun error occurs.

At an overrun error, the data received in buffer 1 are lost.
[2] Parity error <PERR>

The parity bit determined by the data stored in receive buffer 2 (SC0BUF) is
compared with the received parity bit. If the parities differ, a parity error occurs.

[3] Framing error <FERR>
The stop bit of data received is sampled three times. If the majority of samples

are 0, a framing error occurs.

If an error occurs, these error flags are set to 1. Reading the SC0CR register
clears the error flags to 0. If an error occurs, fix by software.

TMP95CU54A

2005-05-10 95CU54A-147

(10) Handshake function control (only supported in UART mode)
The serial channels use the CTS0 input pin to send data in one-frame units, thus

preventing an overrun error. The serial channel 0 mode control register
SC0MOD<CTSE> enables or disables the handshake function.

In send operations, sending starts when a low level signal is input to the CTS0 pin.
When CTS0 goes high, data sending is halted when sending of the current data

completes and the pin is set to wait state. Sending is not restarted until CTS0 goes
low again.

Although an RTS0 pin is not provided, any port can be assigned to the RTS0
function. When the receiving side has completed reception, the receiving interrupt
processing routine outputs a high-level signal from the port assigned to the RTS0
function. A handshake function can be easily configured by connecting the sending
side CTS0 pin and the receiving side RTS0 pin.

Figure 3.9.4 Handshake Function

[1] When the CTS0 signal rises during sending, sending of the current data frame

is completed, and sending of the next data frame halts.
[2] Sending begins at the first TxDCLK clock falling edge after the CTS0 signal

drops.

Figure 3.9.5 CTS0 (Clear to Send) Signal Timing

TMP95CU54A

2005-05-10 95CU54A-148

3.9.3 Description of Operation

As serial channels 0 and 1 operate identically, the following uses channel 0 as an
example.
(1) Setting send/receive clock transfer rate

[1] Transfer rate setting with baud rate generator selected
The baud rate generator is a circuit used to generate a clock source for the

send/receive clock that controls the serial channel transfer rate.
The input clock for generating the clock source can be selected from among φT0

(4/fc), φT2 (16/fc), φT8 (64/fc), or φT32 (256/fc) from the 9-bit prescaler (see 3.7.2 (1),
Prescaler). The 8-bit and 16-bit timers share the prescaler. Bits 5, 4 of baud rate
generator control register BR0CR<BR0CK1:0> select the input clock.

The selected input clock is divided by the 4-bit divider performing 1 to 16
divisions. Bits 3 to 0 of BR0CR<BR0S3:0> set the divider. The divided clock is the
output clock for the baud rate generator.

The following are the transfer rate calculation formulas when the baud rate
generator is selected:

• I/O interface mode

Baud rate generator input clock [Hz] Transfer rate [bps] = Baud rate generator divisor (2 to 16) ÷ 2

Note: In I/O interface mode, do not set divisor to 1.

• UART mode
Baud rate generator input clock [Hz] Transfer rate [bps] = Baud rate generator divisor (1 to 16) ÷ 16

The relationship between the input clock and the source clock (fc) is:
 φT0 = 4/fc
 φT2 = 16/fc
 φT8 = 64/fc
 φT32 = 256/fc
Accordingly, with the source clock set to 12.288MHz, when φT2 (16/fc) is selected

as the input clock and the divisor is 5, the transfer rate in UART mode is:

fc/16 Transfer rate = 5 ÷ 16 = 12.288 × 106 ÷ 16 ÷ 5 ÷ 16 = 9600[bps]

Table 3.9.1 shows examples of transfer rate settings in UART mode.

TMP95CU54A

2005-05-10 95CU54A-149

[2] Transfer rate settings with the timer 2 comparator output selected (UART mode
only)

The following are the transfer rate calculation formulas when the timer 2
comparator output is selected:

Timer 2 input clock [Hz]Transfer rate [bps] = TREG2 (1 to 256) ÷16

The relationship between the timer 2 input clock and the source clock (fc) is:
 φT1 = 8/fc
 φT4 = 32/fc
 φT16 = 128/fc
Accordingly, with the source clock set to 25MHz, when the timer 2 input clock is

set to φT1 and TREG2 is set to 1, the transfer rate is:

fc/8 Transfer rate = TREG2 ÷ 16 = 24 × 106 ÷ 8 ÷ 1 ÷ 16 = 187500 [bps]

Table 3.9.2 shows examples of the transfer rate settings.

[3] Transfer rate settings with external SCLK input selected

The following are the transfer rate calculation formulas when the external
SCLK input is selected:

• I/O interface mode
Transfer rate [bps] = external SCLK input [Hz] ÷ 2

• UART mode
Transfer rate [bps] = external SCLK input [Hz] ÷ 16

TMP95CU54A

2005-05-10 95CU54A-150

Table 3.9.1 UART Mode Transfer Rate Setting Example (1) (Using Baud Rate Generator)

Note: In I/O interface mode, the transfer rates are 8 times the values in this table.

 In I/O interface mode, do not set the baud rate generator divisor to 1.
Table 3.9.2 UART Mode Transfer Rate Setting Example (2) (Using Timer 2 Input Clock φT1)

Unit: kbps
fc

TREG2 12.288MHz 12MHz 9.8304MHz 8MHz 6.144MHz

1H 96 76.8 62.5 48
2H 48 38.4 31.25 24
3H 32 31.25 16
4H 24 19.2 12
5H 19.2 9.6
8H 12 9.6 6
AH 9.6 4.8
10H 6 4.8 3
14H 4.8 2.4

TMP95CU54A

2005-05-10 95CU54A-151

(2) Data format
Figure 3.9.6 shows the data format for each mode.

Figure 3.9.6 Data Formats

TMP95CU54A

2005-05-10 95CU54A-152

(3) I/O interface mode (Mode 0)
In this mode, data transfer to an external device is synchronous with the transfer

clock.
This mode is used to increase the number of I/O pins for sending or receiving data to

an external shift register or other external destinations.
This mode consists of SCLK0 output mode, which outputs a synchronous clock

(SCLK0), and SCLK0 input mode, which inputs a synchronous clock (SCLK0) from an
external source.

Figures 3.9.7 and 3.9.8 show connection examples of SCLK0 output and input modes.

Figure 3.9.7 Example of SCLK0 Output Mode Connection

Figure 3.9.8 Example of SCLK0 Input Mode Connection

TMP95CU54A

2005-05-10 95CU54A-153

[1] Sending
In SCLK0 output mode, each time the CPU writes data in the send buffer, eight

data bits are output from the TxD0 pin, and a transfer clock signal is output from
the SCLK0 pin. When all data have been sent, INTES0<ITX0C> is set, triggering
an INTTX0 interrupt request.

Figure 3.9.9 Sending in I/O Interface Mode (SCLK0 Output Mode)

In SCLK0 input mode, pin TxD0 outputs eight transfer data bits when SCLK0
input is supplied and data are written to the send buffer by the CPU.

When all data have been sent, INTES0<ITX0C> is set, triggering an INTTX0
interrupt request.

Figure 3.9.10 Sending in I/O Interface Mode (SCLK0 Input Mode)

TMP95CU54A

2005-05-10 95CU54A-154

[2] Receiving
In SCLK0 output mode, whenever the receive interrupt flag INTES0<IRX0C> is

cleared by the CPU reading the received data, a synchronous clock is output from
the SCLK0 pin and the next data frame is shifted to receive buffer 1. When an
8-bit data frame is received, it is transferred to receive buffer 2 (SC0BUF), and
INTES0<IRX0C> is set again, triggering an INTRX0 interrupt request.

Figure 3.9.11 Receiving in I/O Interface Mode (SCLK0 Output Mode)

In SCLK0 input mode, if SCLK0 input is supplied when received data are read
by the CPU, thus clearing receive interrupt flag INTES0<IRX0C>, the next data
frame is shifted into receive buffer 1.

When an 8-bit data frame is received, it is shifted to receive buffer 2 (SC0BUF)
and INTES0<IRX0C> is set again, triggering an INTRX0 interrupt request.

Figure 3.9.12 Receiving in I/O Interface Mode (SCLK0 Input Mode)

Note: To receive data, first enable reception (set SC0MOD<RXE> to 1) for either SCLK0 input
mode or output mode.

TMP95CU54A

2005-05-10 95CU54A-155

(4) 7-bit UART mode (Mode 1)
Setting serial channel 0 mode control register SC0MOD<SM1:0> to 01 specifies 7-bit

UART mode.
A parity bit may be added in this mode. Enable or disable the addition of a parity bit

by serial channel 0 control register SC0CR<PE>.
With <PE> set to 1 (parity bit added), SC0CR<EVEN> selects even or odd parity.

Setting example: send 7-bit data with an even parity bit added:

Note: X : Don’t care − : No change

(5) 8-bit UART mode (Mode 2)
Setting serial channel 0 mode control register SC0MOD<SM1:0> to 10 selects 8-bit

UART mode.

A parity bit may be added in this mode. Enable or disable the addition of a parity bit
by serial channel 0 control register SC0CR<PE>. With <PE> set to 1 (parity bit added),
SC0CR<EVEN> selects even or odd parity.

Setting example: send 8-bit data with an odd parity bit added:

TMP95CU54A

2005-05-10 95CU54A-156

Main routine settings:

Note: X : Don’t care − : No change

Interrupt routine processing example:

Check for errors with SC0CR error flags (<OERR>, <PERR>, <FERR>). If there are
no errors, read the data received.

(6) 9-bit UART mode (Mode 3)

Setting the serial channel 0 mode control register SC0MOD<SM1:0> to 11 selects
9-bit UART mode.

A parity bit cannot be added in this mode.
When sending, the most significant bit (bit 9) is written to SC0MOD<TB8>.
When receiving, the most significant bit is saved in serial channel control register

SC0CR<RB8>. When the buffer is written to or read from, the most significant bit is
always read or written first.

Wake-Up function

In 9-bit UART mode, select the slave controller wake-up function by setting
SC0MOD<WU> to 1. When SC0CR<RB8> = 1, received data are interpreted as select
code, and an INTRX0 interrupt request occurs.

Note: The TxD pin of the slave controller must always be set to open-drain output mode using the ODE
register.

Figure 3.9.13 Serial Link using Wake-Up function

TMP95CU54A

2005-05-10 95CU54A-157

[1] Set the master controller and all slave controllers to 9-bit UART mode.

[2] Set the serial channel 0 mode control register SC0MOD<WU> of each slave
controller to 1 to enable data reception.

[3] The master controller sends one frame with the most significant bit (bit 8)
SC0MOD<TB8> set to 1. This frame contains the 8-bit select code of a slave
controller.

[4] The slave controllers receive the above data frame. The slave controller whose
select code matches the select code in the data frame received clears its
SC0MOD<WU> bit to 0.

[5] The master controller sends data frames with their most significant bit (bit 8)
SC0MOD<TB8> set to 0 to the specified slave controller (the controller whose
SC0MOD<WU> bit is cleared to 0).

[6] The slave controllers whose SC0MOD<WU> bit is 1 ignore the received data as
interrupt INTRX0 is not generated when the most significant bit (bit 8)
SC0CR<RB8> remains cleared to 0 (when data are sent).
The slave controller whose SC0MOD<WU> bit is cleared to 0 can inform the
master controller of the termination of a send it received by sending data to the
master controller.

Protocol

TMP95CU54A

2005-05-10 95CU54A-158

Setting example: When linking two slave controllers serially with the master
controller using internal clock φ1 as the transfer clock.

As serial channels 0 and 1 operate identically in this mode, the following describes
channel 0 only.

• Setting the master controller

Main routine:

Note: X : Don’t care − : No change

• Setting slave controller 2
Main routine:

INTRX0 interrupt routine:

Compare SC0BUF and select code (00001010B). If these match, clear
SC0MOD<WU> to 0.

Note: X : Don’t care − : No change

TMP95CU54A

2005-05-10 95CU54A-159

(7) Signal generation timing

[1] In I/O Interface mode

[2] In UART mode

Receive

Send

TMP95CU54A

2005-05-10 95CU54A-160

3.10 Analog/Digital Converter

The TMP95CU54A incorporates a high-speed, high-precision 10-bit successive approximation
type analog/digital converter (AD converter) with 8-channel analog input.

Figure 3.10.1 is a block diagram of the AD converter. The 8-channel analog input pins (AN0
to AN7) are shared by input-only port A and can thus be used as an input port.

Note: When the power is reduced by setting IDLE2, IDLE1, or STOP mode, with some timings,
the system may enter standby mode even though the internal comparator is still
enabled. Therefore, be sure to check that AD converter operations are halted before
executing a HALT instruction.

Figure 3.10.1 AD Converter Block Diagram

TMP95CU54A

2005-05-10 95CU54A-161

3.10.1 Analog/Digital Converter Registers

The AD converter is controlled by two AD mode control registers: ADMOD0 and
ADMOD1. Eight AD conversion data upper and lower registers (ADREG04H/L,
ADREG15H/L, ADREG26H/L, and ADREG37H/L) store the AD conversion results.

Figures 3.10.2 (1-4) show registers related to the AD converter.

Figure 3.10.2 Register for AD Converter (1/4)

TMP95CU54A

2005-05-10 95CU54A-162

Figure 3.10.2 Register for AD Converter (2/4)

TMP95CU54A

2005-05-10 95CU54A-163

Figure 3.10.2 Register for AD Converters (3/4)

TMP95CU54A

2005-05-10 95CU54A-164

Figure 3.10.2 Register for AD Converters (4/4)

TMP95CU54A

2005-05-10 95CU54A-165

3.10.2 Description of Operation

(1) Analog reference voltage
A high level analog reference voltage is applied to the VREFH pin; a low level analog

reference voltage to the VREFL pin. To perform AD conversion, the reference voltage
(the difference between VREFH and VREFL) is divided by 1024 using string resistance.
Then, the result of the division is compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, write 0 to AD mode control
register 1 ADMOD1<VREFON>. To start AD conversion from the off state, first write
1 to <VREFON>, wait 3 µs until the internal reference voltage stabilizes (not related to
the fc), then write 1 to AD mode register ADMOD0<ADS>.

(2) Analog input channel selection

The analog input channel selection varies according to the operating mode of the AD
converter.
• In analog input channel fixed mode (ADMOD0<SCAN> = 0)

Setting ADMOD1<ADCH2 to 0> selects one channel from among analog input pins
AN0 to AN7.

• In analog input channel scan mode (ADMOD0<SCAN> = 1)
Setting ADMOD1<ADCH2 to 0> selects one scan mode from among eight scan
modes.

Table 3.10.1 shows the analog input channel selection for each operating mode.
After a reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH2 to 0> is initialized

to 000, thus selecting pin AN0 as the channel fixed input. Pins not used as analog
input channels can be used as standard input ports.

Table 3.10.1 Analog Input Channel Selection

(3) Starting AD conversion
To start AD conversion, write 1 to AD mode control register 0 ADMOD0<ADS> or AD

mode control register 1 ADMOD1<ADTRGE> and input a falling edge on the ADTRG
pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> is set
to 1, indicating AD conversion is in progress.

Writing 1 to <ADS> during AD conversion restarts conversion. At that time, to
determine whether the AD conversion results are preserved, check the conversion data
storage flag ADREGxL<ADRxRF>.

During AD conversion, inputting a falling edge to the ADTRG pin is ignored.

TMP95CU54A

2005-05-10 95CU54A-166

(4) AD conversion modes and AD conversion end interrupt
The four AD conversion modes are:

• Channel fixed single conversion mode
• Channel scan single conversion mode
• Channel fixed repeat conversion mode
• Channel scan repeat conversion mode

AD mode control register 0 ADMOD0<REPET>, <SCAN> selects the AD mode.
Completion of AD conversion triggers the AD conversion end INTAD interrupt

request. Also, ADMOD0<EOCF> is set to 1 to indicate that AD conversion is complete.
[1] Channel fixed single conversion mode

Setting ADMOD0<REPET>, <SCAN> to 00 sets conversion channel fixed single
conversion mode.

In this mode, one specified channel is converted once only. When the conversion
is complete, the ADMOD0<EOCF> flag is set to 1, ADMOD0<ADBF> is cleared to
0, and an INTAD interrupt request is generated.

[2] Channel scan single conversion mode
Setting ADMOD0<REPET>, <SCAN> to 01 sets conversion channel scan single

conversion mode.
In this mode, the specified scan channels are converted once only. When scan

conversion is complete, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared
to 0, and an INTAD interrupt request is generated.

[3] Channel fixed repeat conversion mode
Setting ADMOD0<REPET>, <SCAN> to 10 sets conversion channel fixed repeat

conversion mode.
In this mode, one specified channel is converted repeatedly. When conversion is

complete, ADMOD0<EOCF> is set to 1 and ADMOD0<ADBF> is not cleared to 0
but held at 1. The INTAD interrupt request generation timing is selected by
ADMOD0<ITM0>.

Setting <ITM0> to 0 generates an interrupt request when every AD conversion
is complete.

Setting <ITM0> to 1 generates an interrupt request when every fourth
conversion is complete.

[4] Channel scan repeat conversion mode
Setting ADMOD0<REPET>, <SCAN> to 11 sets conversion channel scan repeat

conversion mode.
In this mode, the specified scan channels are converted repeatedly. When each

scan conversion is complete, ADMOD0<EOCF> is set to 1 and an INTAD interrupt
request is generated. ADMOD0<ADBF> is not cleared to 0 but held at 1.

To stop conversion in a repeat conversion mode (mode [3] or [4]), write 0 to
ADMOD0<REPET>. After the current conversion is complete, the repeat
conversion mode terminates and ADMOD0<ADBF> is cleared to 0.

Switching to a halt state (IDLE2, IDLE1, or STOP) immediately stops the AD
converter even with AD conversion still in progress. In repeat conversion modes
(modes [3] and [4]), after the halt is released, conversion restarts from the
beginning. In single conversion modes (modes [1] and [2]), conversion does not
restart (the converter remains stopped).

Table 3.10.2 shows the relationship between AD conversion modes and interrupt
requests.

TMP95CU54A

2005-05-10 95CU54A-167

Table 3.10.2 Relationship Between AD Conversion Modes and Interrupt Requests

(5) AD conversion time
84 states (7 µs @ fc = 24 MHz) are required for AD conversion of one channel.

(6) Storing and reading AD conversion result
The AD conversion data upper and lower registers (ADREG04H/L to ADREG37H/L)

store the AD conversion results. (ADREG04H/L to ADRG37H/L are read-only
registers.)

In channel fixed repeat conversion mode, the conversion results are stored
successively in registers ADREG04H/L to ADRG37H/L. In other modes, the AN0 and
AN4, AN1 and AN5, AN2 and AN6, and AN3 and AN7 conversion results are stored in
ADREG04H/L, ADREG15H/L, ADREG26H/L, and ADREG37H/L respectively.

Table 3.10.3 shows the correspondence between analog input channels and AD
conversion result registers.

Table 3.10.3 Correspondence Between Analog Input Channels and
AD Conversion Result Registers

The AD conversion data storage flag <ADRxRF> uses bit 0 of the AD conversion data

lower register. The storage flag indicates whether the AD conversion result register
was read or not. When a conversion result is stored in the AD conversion result
register, the flag is set to 1. When either of the AD conversion result registers
(ADREGxH or ADREGxL) is read, the flag is cleared to 0.

Reading the AD conversion result also clears the AD conversion end flag
ADMOD0<EOCF> to 0.

TMP95CU54A

2005-05-10 95CU54A-168

Setting example:
[1] Convert the analog input voltage at the AN3 pin and write the result to memory

address 0800H using the AD interrupt (INTAD) processing routine.

[2] This example repeatedly converts the analog input voltages at the three pins AN0
to AN2, using channel scan repeat conversion mode.

Note: X : Don’t care − : No change

TMP95CU54A

2005-05-10 95CU54A-169

3.11 CAN Controller

(1) Overview
• Supports CAN version 2.0B
• Supports standard format and Extended format
• Supports data frames and remote frames in both formats
• 16 Mailboxes (15 Receive & Transmit + 1 Receive only)
• Baud rate up to 1Mbps on the CAN bus (at operation frequency 20 to 24 MHz)
• Programmable baud rate with bit time parameter
• Built in baud rate prescaler
• 2 selectable mechanisms for internal arbitration of transmit messages

[1] mailbox number

[2] identifier priority
• Time stamp for receive and transmit messages
• Operation mode

[1] Normal operation mode
[2] Configuration mode
[3] Sleep mode (Wake up on CAN bus activity or CPU access)
[4] Halt mode
[5] Test loopback mode (stand alone operation enabled by self acknowledge)
[6] Test error mode (Write enabled to error counter)

• Message acceptance filter
[1] Programmable global mask for mailboxes 0 to 14
[2] Programmable local mask for mailbox 15

• Acceptance mask bit for identifier extended bit
• Flexible interrupt structure (3 interrupts)

[1] Receive interrupt: INTCR
[2] Transmit interrupt: INTCT
[3] Global interrupt: INTCG (includes warning level, error passive, bus off, etc.)

(2) Nomenclature
• R/W Read and write access by the CPU
• R Read access by the CPU
• W Write access by the CPU
• R/S Read access and set (write with 1) by the CPU
• R/C Read access and clear (write with 1) by the CPU
• The mailbox RAM symbol “−” following a Reset indicates that the initial value is

indeterminate.
• The mailbox RAM bit Symbol “\” denotes blank bits. The values of these bits are

indeterminate when read.
• The control register bit Symbol “\” denotes reserved bits. They indicate that value is

indeterminate when read.
Always write “0” when write.

TMP95CU54A

2005-05-10 95CU54A-170

(3) Architecture

16×128bits

Write ID (Compare)

ID compare
register

Figure 3.11.1 Block Diagram of CAN Controller

(4) CAN bus interface
The interface to the CAN bus is a simple two-wire line, consisting of an input pin RX and

an output pin TX. This CAN bus interface is suitable for operation with CAN bus
transceivers based on ISO/DIS 11898.

TMP95CU54A

2005-05-10 95CU54A-171

3.11.1 Memory Map

The mailboxes and control registers used by the CAN are mapped to the memory
locations shown below.

Table 3.11.1 CAN Mailboxes and Control Registers

(Reserved)

(Reserved)

Note1: * Read- modify-write prohibited.
Note2: Do not access the reserved address.

TMP95CU54A

2005-05-10 95CU54A-172

3.11.2 Mailboxes

The mailbox is configured with RAM to store identifiers and transmit/receive data, which
can be accessed by the CAN controller and the CPU. The CPU controls the CAN controller
by modifying the contents of the mailboxes and control registers. The contents of the
mailboxes and control registers are used to perform the functions of acceptance filtering,
transmit message and interrupt handling.

In order to initiate a transfer, the transmission request bit has to be written to the
corresponding register. The entire transmission procedure is done then without any CPU
involvement. If a mailbox has been configured as receive messages the CPU easily reads
its data registers using CPU read instructions. The mailbox may be configured to interrupt
the CPU after every successful message transmission or reception.

The mailbox module provides 16 mailboxes, each of which has 8 bytes long data, 29-bit
identifier and several control bits. Each mailbox is 16 bytes in size. Each mailbox, except
the last one, can be set for either transmit or receive operation.

Mailbox 15 is a receive-only mailbox with a special acceptance mask designed to allow
groups of different message identifiers to be received.

The receive-only mailbox 15 masks all bits when receiving a message whose ID does not
correspond to any of the mailboxes 0 to 14.

In addition, when using mailbox 15 as a usual receiving mailbox, the automatic remote
frame response function cannot be used. Set <RFH> bit to 0 to disable automatic remote
frame response. In this case, each time a message is received, the ID of all mailboxes is
checked by software. If the ID is rewritten to a different ID from that which was originally
received, the received data is invalid. Once mailbox prohibit (MC=0) is set, after waiting
maximum frame length, set the correct ID again.

Each mailbox is configured as shown below.

The components of each mailbox are explained in the following pages.

TMP95CU54A

2005-05-10 95CU54A-173

Message Identifier Field 0 (MI0)

The priority of a message ID becomes so high that 0 continues from the MSB (<ID28> bit)
of ID.

Note1: When the receive-only mailbox MB15 is used as a usual receiving mailbox, the automatic
remote frame response function cannot be used. The remote frame processing bit <RFH> is
set to “0”.

Note2: When the ID of the received remote frame corresponds to the ID of the transmission mailbox
<RFH> = “1” and <GAME> = “1”, the ID of the remote frame is overwritten to this mailbox.
Thereafter, it responds by automatically applying the overwritten ID.

Note1) Note2)

TMP95CU54A

2005-05-10 95CU54A-174

Message Identifier Field 1 (MI1)

Note1: For standard format, identifiers <ID17> to <ID0> are indeterminate.

Note2: Set the mailbox ID at initial configuration. Once a mailbox has been enabled, when writing to the MI0
or MI1 field of the mailbox, reset the <MC> bit, and after a mailbox has been prohibited by the CAN
controller, wait the maximum frame length time before executing the operation.

TMP95CU54A

2005-05-10 95CU54A-175

Message Control Field (MCF)

Note: There is no necessity for initial configuration of receive mailboxes. RTR and DLC of the received message
are stored in the MCF register. Please set transmit mailboxes at the initial configuration.

Data field (D0 to D7)

This is a read/write register that stores up to 8 bytes of transmit/receive data. However,
in the case of receive mailboxes, the write access to the data field is disabled.

For transmit, data in a length of bytes set by the mailbox’s data length code is
transmitted.

For receive, the data length code in the receive message is copied to the mailbox’s data
length code, so that the byte in a length equal to this data length code is received as valid
data.

TMP95CU54A

2005-05-10 95CU54A-176

TMP95CU54A

2005-05-10 95CU54A-177

Time Stamp Value (TSV)

This is a 16-bit read-only register into which the value of the time stamp counter is
loaded when data is successfully transmitted or received.

The counter value is not loaded into this register when transmit or receive operations
fail.

Maximum frame length

Rewrite message ID field after MCn is prohibited and one frame time passes.
General one frame time is as follows:
N means the number of data byte (0-8 byte).
- Standard frame format (at data frame) = (44 + 8N) × 1 bit time
- Extended frame format (at data frame) = (64 + 8N) × 1 bit time
Furthermore, the maximum frame length to which bit stuffing applies is as follows:
 Since the maximum number of bits is eight byte data of the extended frame format,
 64-bit(fixed length) + 64-bit (number of data bytes) = 128-bit.

 Moreover, the bit stuffing rule is not applied to
 EOF + ACK field + CRC delimiter = 10-bit,

Therefore the maximum number of bits to which the bit stuffing rule applies is
 128-bit – 10-bit = 118-bit length.

(It is calculated on the assumption of the longest case of insertion of the stuffing bit in
the CRC field.)
At the bit stuffing rule, as a reversing bit is inserted when the same level is 5-bit
successive, the maximum inserted number of bits is

 118-bit ÷ 5 → 24-bit.
Hence, the maximum frame length is

 128-bit + 24-bit = 152-bit.
Therefore, when the message ID field is rewritten at a baud-rate of 500kbps, is the
necessary waiting time is:

 152-bit × 2 us = 304 µs

TMP95CU54A

2005-05-10 95CU54A-178

3.11.3 Control Registers

(1) Mailbox control registers

Mailbox configuration register (MC)

Each bit corresponds to mailboxes 0 through 15.
Each mailbox can be enabled or disabled.

When <MCn> = 1, access to mailbox “n” is enabled.
When <MCn> = 0, access to mailbox “n” is disabled.

If, during CAN controller transmission, <MCn>=0, access may be permitted depending
on the transmission stage. In this case, there is the possibility of conflict between the
mailbox transmit/receive complete flag and the transmit/receive interrupt flag.

Set the mailbox ID at initial configuration. After disabling a mailbox by resetting the
<MC> bit, wait the maximum frame length time before rewriting to the MI0 or MI1 field of
the mailbox which is permitted.

The transmit mailbox data and control fields can be accessed for write at any time.
However, in the case of transmit mailboxes where the <RFH> bit is set, the write access to
the message control field is enabled when the <MC> bit is reset.

TMP95CU54A

2005-05-10 95CU54A-179

Mailbox direction register (MD)

Each bit corresponds to mailbox 0 through 15.
Each mailbox except mailbox 15 can be directed for transmit or receive.
When <MDn> = 0, the mailbox MBn is directed for transmit.
When <MDn> = 1, the mailbox MBn is directed for receive.
Mailbox 15 is a receive-only mailbox, so that <MD15> bit is fixed to 1. This bit can only

be read; you cannot write to it.
MD registers are set at initial configuration. When the setting is changed while

transmitting or receiving, the following operations occur.
(1) When changing to <MDn> = 0 (transmission) while receiving.

Reception of the message currently being received continues, and after the reception is
completed, the <RMPn> bit is set to 1. However, the <MBRIFn>flag is not set even if
<MBIMn> is set to 1 (interrupt enabled), and the receive interrupt is not generated.

(2) When changing to <MDn>=1 (reception) while transmitting.
Transmission of the message currently being transmitted continues, and after the
transmission is completed, <TAn> bit is set to 1. However, the <MBTIFn> flag is not
set even if <MBIMn> is set to 1 (interrupt enabled), and the transmit interrupt is not
generated.

TMP95CU54A

2005-05-10 95CU54A-180

(2) Transmit control registers

Transmission request set register (TRS)

Each bit corresponds to mailboxes 0 through 15. Since mailbox 15 is a receive-only
mailbox, bit 15 is nonexistent.

If after writing data and identifier to mailbox “n” that has been set for transmit
(<MDn> = 0), the <TRSn> bit is set when the said mailbox is enabled (<MCn> = 1), a
message is transmitted from mailbox “n”. If there are multiple transmit requests,
messages are transmitted sequentially. The order in which messages are transmitted
depends on the master control register MCR bit 3 <MTOS>.

If <MTOS> bit is set to “0”, the mailbox with the lower number has the higher
priority. For example: if the mailboxes MB0, MB2 and MB5 are configured for
transmission and the corresponding TRS bits are set, then the messages will be
transmitted in the following order: MB0, MB2 and MB5. If a new transmission request
is set for MB0 during the processing of MB2 then in the next internal arbitration-run
MB0 will be selected for the next transmission. This will also happen, when the CAN
controller loses arbitration while transmitting MB2. In this case, MB0 will be sent at
the next opportunity instead of MB2.

If <MTOS> bit is set to “1”, the priority of the identifier stored in the mailbox will
determine the sending order. The mailbox with the higher-priority identifier will be
sent first. In case of a lost arbitration on the CAN bus line, a new internal arbitration
run will be started and the message with the highest priority will be sent at the next
possible time.

The <TRSn> bit is reset when transmit has succeeded.
If transmit has failed, transmit is retried repeatedly until it succeeds.
When the <TRSn> bit is 1, the write access to the corresponding mailbox is denied.
The <TRSn> bit cannot be set from the CPU if mailbox “n” is set for receive.
When mailbox “n” is set for transmit, the <TRSn> bit is set by writing a 1 from the

CPU and is reset by the internal logic. Writing a 0 from the CPU has no effect.

TMP95CU54A

2005-05-10 95CU54A-181

Transmission acknowledge register (TA)

Each bit corresponds to mailboxes 0 through 15. Since mailbox 15 is a receive-only
mailbox, bit 15 is nonexistent.

The <TAn> bit is set when the message of mailbox “n” has been transmitted
successfully. In this case, a transmission successful interrupt is generated if it has
been enabled.

The <TAn> bit is reset by writing a “1” to the <TAn> bit or the <TRSn> bit from the
CPU. Writing a “0” from the CPU has no effect.

Change data request register (CDR)

 Change Data Request Register Low

Change Data Request Register High

Each bit corresponds to mailboxes 0 through 15. Since mailbox 15 is a receive-only
mailbox, bit 15 is nonexistent.

If the <CDRn> bit is set, a transmission request for mailbox “n” will be ignored. That
means, that a mailbox “n” with the <TRSn> and <CDRn> bit set will not be considered
in the internal arbitration-run: the mailbox “n” is locked for transmission. The
processing of mailbox “n” in the arbitration-run will be considered again after clearing
the <CDRn> bit.

The <CDR> bit is useful for dealing with remote frames. It is intended for updating
the data field of a transmit mailbox, which is configured for automatic reply to remote
frames (the <RFH> bit is set). By using the <CDR> bit, the user can update the data
field without needing to take additional care with regard to data consistency.

TMP95CU54A

2005-05-10 95CU54A-182

(3) Receive control registers
The identifier of each incoming message is compared with the identifiers held in the

mailboxes that have been set for receive operation. The comparison of the identifiers
depends on the value of the global/local acceptance mask enable bits
<GAME>/<LAME> in the mailbox and the data held in the global/local acceptance
mask registers GAM/LAM.

When a matching identifier is detected, the received identifier, control bits, and data
bytes are written to the mailbox that has matched. At this time, the corresponding
receive message pending bit <RMPn> is set and a receive successful interrupt is
generated if it has been enabled. Once a matching identifier is found, no other
identifiers are compared.

If no match is detected, the message is rejected.
The CPU must reset the <RMPn> bit after reading the data. If a second message is

received for this mailbox when the <RMPn> bit has already been set, the
corresponding receive message lost bit <RMLn> is set. In this case, the data stored in
mailbox “n” is overwritten with the new data. In this case, a global interrupt (receive
message lost) is generated if it has been enabled.

Receive-only mailbox

Only if the identifier of a received message does not match any identifiers of the
mailboxes 0 through 14 is the identifier compared with the identifier of the
receive-only mailbox 15. When a matching identifier is detected, the contents of the
received message are written to the mailbox 15.

Receive message pending register (RMP)

Each bit corresponds to mailbox 0 through 15.
When a message is received and its content is stored in mailbox “n”, the <RMPn> bit

is set.
If a second message is received by mailbox “n” for which the <RMPn> bit has been

set, mailbox “n” is overwritten with the new data. In this case, the corresponding
<RMLn> bit is set.

The <RMPn> bit is set by the internal logic and is reset by writing a 1 to the
<RMPn> bit from the CPU. Writing a 0 from the CPU has no effect.

TMP95CU54A

2005-05-10 95CU54A-183

Receive message lost register (RML)

Each bit corresponds to mailbox 0 through 15.
If a second message is received by mailbox “n” for which the <RMPn> bit has been

set, mailbox “n” is overwritten with the new data and the <RMLn> bit is set.
The <RMLn> bit is set by the internal logic and is reset by writing a 1 to the

<RMPn> bit from the CPU. Writing a 0 to <RMPn> bit and writing a 1 or 0 to <RMLn>
bit from the CPU have no effect.

TMP95CU54A

2005-05-10 95CU54A-184

(4) Handling of remote frames
If a remote frame is received, it is compared with the identifiers of all mailboxes.

The comparison of identifiers depends on the value of the global/local acceptance mask
enable bits <GAME>/<LAME> in the mailbox and the data held in the global/local
acceptance mask registers GAM/LAM.

If a received remote frame matches the identifier of a mailbox that is set for transmit
and the <RFH> bit for that mailbox is set, the <TRSn> bit is set in order to send a
message in response to the remote frame. Even when there is a matching identifier, if
the <RFH> bit for that mailbox is reset (even though it may be a transmit mailbox), the
remote frame is not responded to.

If there is a matching identifier and this mailbox is set for receive, the remote frame
is processed as data frame, in which case the <RMP> and <RFP> bits are set.

Once a matching identifier is found, no other identifiers are compared.

Table 3.11.2 Operation when Remote Frame is Received

(Note)

Note: When the ID matches a <GAME>=1 mailbox, the mailbox ID is overwritten with the remote frame ID and

automatically responds to this new ID.

Remote frame pending register (RFP)

When a remote frame is received by mailbox “n” set for receive, the corresponding
<RFPn> and <RMPn> bits are set. The <RFPn> bit is reset by writing a “1” to the
<RMPn> bit. Writing a “0” has no effect. Also, the <RFPn> bit is reset automatically
when the remote frame received in mailbox “n” is overwritten by a newly received data
frame.

TMP95CU54A

2005-05-10 95CU54A-185

(5) Acceptance filter
The global acceptance mask registers GAM0 and GAM1 are used for filtering

messages when the <GAME> bit for mailboxes 0 through 14 is set to 1. An incoming
message is stored in the first mailbox with a matching identifier. Only if there is no
matching identifier in the mailboxes 0 to 14 is the incoming message compared with
the mailbox 15, a receive-only mailbox. The local acceptance mask registers LAM0,
LAM1 are used for filtering messages when the <LAME> bit for mailbox 15 is set.

Figure 3.11.2 Acceptance Filter

TMP95CU54A

2005-05-10 95CU54A-186

Local acceptance mask registers (LAM0, LAM1)

The LAM0 and LAM1 registers are used only for filtering messages for mailbox 15.
This feature allows the user to choose whether or not to locally mask any identifier bit
of the incoming message for mailbox 15. Incoming messages are first checked to see if
they match mailboxes 0 to 14 before being forwarded to mailbox 15.

If the <LAMn> bit is 0, messages are received only when the corresponding bit of the
incoming message identifier matches that of the mailbox identifier. If the <LAMn> bit
is 1, messages are received regardless of whether the corresponding bit of the incoming
message identifier is 0 or 1. The GAM0 and GAM1 registers do not affect mailbox 15.

For messages in extended format, the identifier extension <IDE> bit and the whole
29 bits of the identifier are compared. For messages in standard format, only the
<IDE> bit and the first 11bits of the identifier (<ID28> to <ID18>) are compared.

The <LAMI> bit (local acceptance mask identifier extension bit) is used to mask the
<IDE> bit of mailbox 15.

If the <LAMI> bit is 0, messages in extended or standard format are received
according to the <IDE> bit of mailbox 15.

If the <LAMI> bit is 1, messages in both extended and standard formats are received
regardless of whether the <IDE> bit of mailbox 15 is 0 or 1. For messages in extended
format, the whole 29bits of the mailbox identifier and the whole 29 mask bits of the
LAM register are used for filtering. For messages in standard format, only the first
11bits of the mailbox identifier (<ID28> to <ID18>) and the first 11 bits of the LAM
register (<LAM28> to <LAM18>) are used for filtering.

LAM0 and LAM1 are set at initial configuration. Do not change the setting of these
registers while operating. If the setting is changed while receiving, the received
message IDs are compared with the changed register values.

TMP95CU54A

2005-05-10 95CU54A-187

Global acceptance mask registers (GAM0, GAM1)

The GAM0 and GAM1 registers are used for filtering messages for mailbox 0 to 14.
If the <GAME> bit for mailboxes 0 to 14 is set, the GAM0 and GAM1 registers are

used for incoming messages. A received message is stored in only the first mailbox
with a matching identifier.

If the <GAMn> bit is 0, messages are received only when the corresponding bit of the
incoming message identifier matches that of the mailbox identifier. If the <GAMn> bit
is 1, messages are received regardless of whether the corresponding bit of the incoming
message identifier is 0 or 1. For messages in extended format, the identifier extension
<IDE> bit and the whole 29 bits of the identifier are compared. For messages in
standard format, only the <IDE> bit and the first 11 bits of the identifier (<ID28> to
<ID18>) are compared.

The <GAMI> bit (global acceptance mask identifier extension bit) is used to mask
the <IDE> bits of mailbox 0 to 14.

If the <GAMI> bit is 0, messages in extended or standard format are received
according to the <IDE> bits of mailbox 0 to 14.

If the <GAMI> bit is 1, messages in both extended and standard formats are received
regardless of whether the <IDE> bits of mailbox 0 to 14 are 0 or 1. For messages in
extended format, the whole 29 bits of the mailbox identifier and the whole 29 mask bits
of the GAM register are used for filtering. For messages in standard format, only the
first 11bits of the mailbox identifier (<ID28> to <ID18>) and the first 11 bits of the
GAM register (<GAM28> to <GAM18>) are used for filtering.

GAM0 and GAM1 are set at initial configuration. Do not change the setting of these
registers while operating. If the setting is changed while receiving, the received
message IDs are compared with the changed register values.

TMP95CU54A

2005-05-10 95CU54A-188

(6) Control registers

Master control register (MCR)

TSTLB: Test Loopback

0: Cancels the test loopback mode. (Normal operation)
1: Requests the test loopback mode.

This mode supports stand-alone operation.

TSTERR: Test Error

0: Cancels the test error mode. (Normal operation)
1: Requests the test error mode.

In this mode it is possible to write the error counter register CEC.

CCR: Change Configuration Request

0: Cancels the configuration mode. (Normal operation)
1: Request the configuration mode.

This mode allows for writing to the bit configuration registers BCR1, BCR2.

SMR: Sleep Mode Request

0: The sleep mode is not requested. (Normal operation)
1: Requests the sleep mode.

When this mode is entered, the CAN controller clock stops oscillating and the
error counter and transmit requests are cleared.

HMR: Halt Mode Request

0: Cancels the halt mode. (Normal operation)
1: Requests the halt mode.

When this mode is entered, the CAN controller no longer transmits and
receives messages. It only sends error and acknowledge flags.

WUBA: Wake Up on Bus Activity

0: Wakes up the module only by detecting a write access to the MCR register.
1: Wakes up the module when active bus state is detected or detecting a write

access to the MCR register.

TMP95CU54A

2005-05-10 95CU54A-189

MTOS: Mailbox Transmission Order Select

0: Mailbox transmission order by mailbox number. The mailbox with the lower
number will be sent first.

1: Mailbox transmission order by identifier priority. The mailbox with the higher
priority identifier will be sent first.

TSCC: Time Stamp Counter Clear

0: No effect
1: The time stamp counter will be cleared.

Note 1: This is a write-only bit; it is always 0 when read.
Note 2: The time stamp counter is also cleared by a write to the TSP register, or

writing a 0 to the TSC register.

SRES: Software Reset

0: No effect
1: Resets the CAN controller in software. All internal registers are initialized.

Note: This is a write-only bit; it is always 0 when read.

Bit configuration register 1 (BCR1)

TMP95CU54A

2005-05-10 95CU54A-190

Bit configuration register 2 (BCR2)

The bit length is determined by parameters TSEG1, TSEG2, and BRP. All CAN
controllers on the CAN bus must operate at the same baud rate. If individual CAN
controllers operate with different frequencies, the baud rate has to be adjusted by the
mentioned parameters. In the bit timing logic, the conversion of the parameters to the
required bit timing is materialized. The configuration registers BCR1 and BCR2
contain the data regarding bit timing.

TMP95CU54A

2005-05-10 95CU54A-191

Figure 3.11.3 Bit Timing

The length of TSCL is defined by:
TSCL = (<BRP7:0> + 1) /fSYS (fSYS = external clock divided by 2)

fSYS is used to the CAN controller system clock frequency (input clock of the CAN
controller).

The length of one bit is determined by the equation below:
 1 Bit Time = SYNCSEG + TSEG1 + TSEG2
1 bit time is equal to or greater than 10 × fSYS
The synchronization segment SYNCSEG has always the length of × TSCL.
The length of TSEG1 should be equal to or greater than the length of TSEG2.
 TSEG1 ≥ TSEG2.
The baud rate is defined by:
 Baud rate = fSYS ÷ [(<BRP7:0> +1 × ((<TSEG13:10> + 1) + (<TSEG22:20> + 1)

+ 1))
IPT (information processing time) is the time segment starting with the sample

point reserved for processing of the sampled bit level. IPT is equal to 4 fSYS clock
cycles.

The parameter SJW (2bit) indicates by how many units of TSCL it is possible to
lengthen or to shorten when re-synchronizing. Values between 1 (SJW = 00b) and 4
(SJW = 11b) are adjustable. The bus line is re-synchronized at each falling edge. The
maximum length of SJW is equal to the length of TSEG2.

 SJW ≤ TSEG2
With the corresponding bit timing, it is possible to reach a multiple sampling of the

bus line at the sample point by setting <SAM> bit. The level determined by the CAN
bus then corresponds to the result from the majority decision of the last three values.
The three-time sampling is not allowed for <BRP7:0> < 4. For <BRP7:0> < 4 a
one-time sampling will always be performed regardless of the value of <SAM> bit.

Restrictions are as follows:

<BRP7:0>
TSCL length

(CAN clock cycles: fsys)
IPT length

(CAN clock cycles: fsys)
TSEG2 minimum length

(TSCL)

0 1 4 4
1 2 4 2

>1 <BPR7:0>+1 4 2

TMP95CU54A

2005-05-10 95CU54A-192

Example for setting baud rate
External clock = 24MHz CAN input clock = fsys
Internal system clock fsys=12MHz 1TSCL=(<BRP7:0>+1)÷fsys

(1)1Mbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

0110b (7TSCL) 011b (4TSCL) 66.7 00h 12
0101b (6TSCL) 100b (5TSCL) 58.3

01h 6 0010b (3TSCL) 001b (2TSCL) 66.7

(2) 500kbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

1111b (16TSCL) 110b (7TSCL) 70.8 00h 24
1110b (15TSCL) 111b (8TSCL) 66.7
1000b (9TSCL) 001b (2TSCL) 83.3
0111b (8TSCL) 010b (3TSCL) 75.0
0110b (7TSCL) 011b (4TSCL) 66.7

01h 12

0101b (6TSCL) 100b (5TSCL) 58.3
0100b (5TSCL) 001b (2TSCL) 75.0 02h 8
0011b (4TSCL) 010b (3TSCL) 62.5

03h 6 0010b (3TSCL) 001b (2TSCL) 66.7

(3)250kbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

1111b (16TSCL) 110b (7TSCL) 70.8 01h 24
1110b (15TSCL) 111b (8TSCL) 66.7
1100b (13TSCL) 001b (2TSCL) 87.5
1011b (12TSCL) 010b (3TSCL) 81.3
1010b (11TSCL) 011b (4TSCL) 75.0
1001b (10TSCL) 100b (5TSCL) 68.8
1000b (9TSCL) 101b (6TSCL) 62.5

02h 16

0111b (8TSCL) 110b (7TSCL) 56.3
1000b (9TSCL) 001b (2TSCL) 83.3
0111b (8TSCL) 010b (3TSCL) 75.0
0110b (7TSCL) 011b (4TSCL) 66.7

03h 12

0101b (6TSCL) 100b (5TSCL) 58.3
0100b (5TSCL) 001b (2TSCL) 75.0 05h 8
0011b (4TSCL) 010b (3TSCL) 62.5

07h 6 0010b (3TSCL) 001b (2TSCL) 66.7

(4)125kbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

1111b (16TSCL) 110b (7TSCL) 70.8 03h 24
1110b (15TSCL) 111b (8TSCL) 66.7
1100b (13TSCL) 001b (2TSCL) 87.5
1011b (12TSCL) 010b (3TSCL) 81.3
1010b (11TSCL) 011b (4TSCL) 75.0
1001b (10TSCL) 100b (5TSCL) 68.8
1000b (9TSCL) 101b (6TSCL) 62.5

05h 16

0111b (8TSCL) 110b (7TSCL) 56.3
1000b (9TSCL) 101b (2TSCL) 83.3
0111b (8TSCL) 010b (3TSCL) 75.0
0110b (7TSCL) 011b (4TSCL) 66.7

07h 12

0101b (6TSCL) 100b (5TSCL) 58.3
0100b (5TSCL) 001b (2TSCL) 75.0 0Bh 8
0011b (4TSCL) 010b (3TSCL) 62.5

0Fh 6 0010b (3TSCL) 001b (2TSCL) 66.7

TMP95CU54A

2005-05-10 95CU54A-193

Example:
A transmission rate of 1 Mbps will be adjusted, i.e. a bit has a length of 1 µs. The

CAN input clock frequency fSYS is 12 MHz. The baud rate prescaler is set to 0. That
means a bit for this data transmission rate has to be programmed with a length of 12 ×
TSCL.

E.g. <BRP7:0> = 00H
<TSEG13:10> = 0101B (6 × TSCL)
<TSEG22:20> = 100B (5 × TSCL)

With this setting a threefold sampling of the bus is not possible (<BRP7:0> < 4), thus
SAM = 0 should be set. SJW is not allowed to be greater than TSEG2, so the maximum
value could be set to <SJW1:0> = 11B (4 × TSCL)

Time stamp feature

There is a free-running 16-bit time stamp counter TSC implemented in the CAN
controller to get an indication of the time of reception or transmission of messages. The
content of the TSC is written into the time stamp value TSV of the corresponding
mailbox when a received message has been stored or a message has been transmitted.

The TSC is driven from the bit clock of the CAN bus line. When the CAN controller
is in configuration mode or sleep mode, the TSC will be stopped. After a reset, the TSC
can be cleared by writing a value to the time stamp counter prescaler TSP. The TSC
can be written and read by CPU in configuration mode and in normal operation mode.

Time stamp counter register (TSC)

Overflow of the TSC can be detected by the time stamp counter overflow flag <TSO>
of the global status register GSR and the time stamp counter overflow interrupt flag
<TSOIF> of the global interrupt flag register GIF. Both flags are cleared by writing a
“1” to the corresponding bit location in GIF.

There is a 4-bit prescaler for the TSC. It is the time stamp counter prescaler register
TSP that stores the value to be reloaded into this prescaler. After reset, the TSP
register is set to 0, so a value 0 is loaded into the prescaler. The TSC counter’s count-up
period, TTSC, is shown below:

TTSC = TBIT × (<TSP3:0> + 1) (TBIT: bit cycle)

TMP95CU54A

2005-05-10 95CU54A-194

Time stamp counter prescaler register (TSP)

To ensure that the value of the TSC will not change during the write cycle to the
mailbox, a hold register is implemented. The value of the TSC will be copied to this
register if a message has been received or transmitted successfully. The reception is
successful for the receiver if there is no error until the last but one bit of End-of-frame.
The transmission is successful for the transmitter if there is no error until the last bit
of End-of-frame. (Refer to the CAN version 2.0B)

Figure 3.11.4 Time Stamp Counter

The free running time stamp counter and the time stamp hold register will be
cleared in the following cases:
• After reset (hardware reset or software reset)
• When the module enters configuration mode
• When the module enters sleep mode
• When a write access to the time stamp prescaler register is performed

Time Stamp Counter Prescaler Register
TSP<TSP3:0>

Prescaler
(4 bits)

Time Stamp Counter Register
TSC<TSC15:0>

Time Stamp Counter Hold Register
(16 bits)

Read/Write

Read/Write

Load

CPU

CPU

CAN bus bit clock

Transmission successful
Reception successful

Hardware reset
Software reset

Hardware reset
Software reset
Entering sleep mode
Entering configuration mode
Write to TSP register

Re-Load value

Count-up clock

Mailbox RAM

Clear

Clear

Clear

TMP95CU54A

2005-05-10 95CU54A-195

(7) Status registers

Global status register (GSR)

MsgInSlot: Message In Slot

Indicates a message in the transmission slot.
0000: Message of mailbox 0
0001: Message of mailbox 1
 :
1110: Message of mailbox 14
1111: No transmission message

RM: Receive Mode

0: The CAN controller is not receiving a message.
1: The CAN controller is receiving a message. That means the CAN controller is

not the transmitter of the message and the bus is not idle.

TM: Transmit Mode

0: The CAN controller is not transmitting a message.
1: The CAN controller is transmitting a message. That means the CAN

controller stays transmitter until the bus is idle or it loses arbitration.

CCE: Change Configuration Enable

0: The CAN controller is not in the configuration mode. (Normal operation)
1: The CAN controller has entered the configuration mode.

SMA: Sleep Mode Acknowledge

0: The CAN controller is not in the sleep mode. (Normal operation)
1: The CAN controller has entered the sleep mode.

HMA: Halt Mode Acknowledge

0: The CAN controller is not in the halt mode. (Normal operation)
1: The CAN controller has entered the halt mode.

TSO: Time Stamp Overflow Flag

0: There was no overflow of the time stamp counter.
1: There was at least one overflow of the time stamp counter since this bit has

been cleared.
To clear this bit, clear the <TSOIF> bit in the GIF register.

TMP95CU54A

2005-05-10 95CU54A-196

BO: Bus-Off Status

0: The CAN controller is in the bus-on status. (Normal operation)
1: The CAN controller is in the bus-off status.

There is an abnormal rate of occurrences of errors on the CAN bus. This
condition occurs when the transmit error counter TEC has reached the limit of
256. During bus-off no messages can be received or transmitted. The CAN
controller will go to bus-on automatically after the bus-off recovery sequence.
After entering bus-off, the error counters are undefined.

EP: Error Passive Status

0: The CAN controller is in the error active mode.
 The values of both transmit error counter TEC and receive error counter REC

are less than 128.
1: The CAN controller is in the error passive mode.
 Either one of or both the transmit error counter TEC and receive error counter

REC have reached the error passive status of 128.

EW: Warning Status

0: Both values of the error counters TEC and REC are less than or equal to 96.
1: At least one of the error counters is greater than 96 and reached the warning

level.

CAN error counter register (CEC)

The CAN controller contains two error counters: receive error counter REC and
transmit error counter TEC. The values of both counters can be read by the CPU. A
write access to the error counters is only possible in the test error mode, at the same
time as and with the same value of the lower 8bit (<TSTERR> bit in MCR register is
set). These error counters are incremented or decremented according to the CAN
version 2.0B.

TMP95CU54A

2005-05-10 95CU54A-197

The controller enters the following three states depending on the values of REC and
TEC.

(1) Error active state (TEC < 128 and REC < 128)
The state where an error rarely occurs.
The CAN controller is in an error active state after reset release.
When an error is detected, an active error flag is transmitted.

(2) Error passive state (TEC ≥ 128 or REC ≥ 128)
The state where many errors have occurred.
When an error is detected, a passive error flag is transmitted.

(3) Bus-off state (TEC ≥ 256)
The CAN controller cannot perform message transmission to and reception from
the CAN bus.

Receive error counter REC is not incremented after exceeding the error passive limit
(128). After the correct reception of a message when REC = 128, the counter is set to a
value between 119 and 127. After reaching the bus-off status, the counts are
undefined.

A CAN controller which is in bus-off state will automatically enter error active state
if 11 continuous recessive bits are detected 128 times on the CAN bus .

All internal flags are reset, and the error counters are cleared. The configuration
registers keep the programmed values. The values of the error counters are undefined
during bus-off status.

When the CAN controller enters configuration mode (see 3.11.4 (1) Configuration
mode), the error counters will be cleared.

TMP95CU54A

2005-05-10 95CU54A-198

(8) Interrupt control registers
The CAN controller has the following interrupt sources:

• Transmit interrupt

When a message has been transmitted successfully
• Receive interrupt

When a message has been received successfully
• Remote frame pending interrupt

When a remote frame is received
• Wake-up interrupt

When the CAN controller is awakened from sleep mode
• Receive message lost interrupt

When a receive message is lost
• Time stamp counter overflow interrupt

When the time stamp counter has overflowed
• Bus off interrupt

When the CAN controller enters the bus-off mode
• Error passive interrupt

When the CAN controller enters the error passive mode
• Warning level interrupt

When at least one of the two error counters is greater than 96 and has reached the
warning level.

These interrupt sources are divided into three groups:

• Receive interrupt (INTCR)
• Transmit interrupt (INTCT)
• Global interrupt (INTCG)

There is one interrupt output line for each group. INTCR is dedicated to receive
interrupts, INTCT is dedicated to transmit interrupts and INTCG to the global
interrupts.

TMP95CU54A

2005-05-10 95CU54A-199

Global interrupt flag register (GIF)

The interrupt flag bits will be set if the corresponding interrupt condition has
occurred. If the corresponding interrupt mask bit is set in the GIM register, an
interrupt pulse on the global interrupt line INTCG will be generated. As long as an
interrupt flag in the GIF register is set, if the corresponding interrupt source generates
a new interrupt event, a new interrupt pulse on INTCG will not be generated. If an
interrupt flag in the GIF register is set and another interrupt source generates an
interrupt event, then a new interrupt pulse on INTCG will be generated.

If one or more interrupt flags have been cleared and one or more interrupt flags are
still set, a new global interrupt pulse INTCG will be generated.

The interrupt flags will be cleared by writing a “1” to the corresponding bit location.
RFPF: Remote Frame Pending Flag

0: No remote frame has been received.
1: A remote frame has been received (in a receive-mailbox).

This bit will not be set if the identifier of the remote frame matches to a
transmit-mailbox with <RFH> set.

WUIF: Wake-Up Interrupt Flag

0: The CAN controller is in the sleep mode or the normal operation mode.
1: The CAN controller has left the sleep mode.

RMLIF: Receive Message Lost Interrupt Flag

0: No receive message has been lost.
1: For at least one of the receive-mailboxes, a receive message has been lost.

At least one of the bits in the RML register is set.

TSOIF: Time Stamp Counter Overflow Interrupt Flag

0: There have been no overflows of the time stamp counter since this bit has been
cleared.

1: There was at least one overflow of the time stamp counter since this bit has
been cleared.

TMP95CU54A

2005-05-10 95CU54A-200

BOIF: Bus-Off Interrupt Flag

0: The CAN controller is still in the bus-on mode.
1: The CAN controller has entered the bus-off mode.

EPIF: Error Passive Interrupt Flag

0: The CAN controller is still in error active mode.
1: The CAN controller has entered the error passive mode.

WLIF: Warning Level Interrupt Flag

0: None of the error counters has reached the warning level.
1: At least one of the error counters has reached the warning level.

Global interrupt mask register (GIM)

Note)

 Note: Write to 0

Each interrupt flag bit in the GIF register is masked by the corresponding mask bit
in the GIM register.

If a bit in the GIM register is 0, the interrupt generation for the corresponding global
interrupt event is disabled, and if it is 1, the interrupt generation is enabled. After
reset, all bits in the GIM register are cleared, thereby disabling global interrupt.

TMP95CU54A

2005-05-10 95CU54A-201

Mailbox interrupts

Separate interrupt outputs are provided for mailbox interrupts independently of
global interrupts. These include mailbox transmit interrupt INTCT, and mailbox
receive interrupt INTCR, that depend on mailbox settings. A mailbox transmit
interrupt flag register MBTIF is provided for mailbox transmit interrupts, and a
mailbox receive interrupt flag register MBRIF is provided for mailbox receive
interrupts.

In addition, there is a mailbox interrupt mask register MBIM that enables or
disables each mailbox interrupt.

Mailbox interrupt mask register (MBIM)

Each bit corresponds to mailboxes 0 through 15.
The MBIM register settings determine whether to enable or disable each mailbox

interrupt.
If a bit in the MBIM register is 0, the interrupt generation for the corresponding

mailbox is disabled.
If a bit in the MBIM register is 1, the interrupt generation for the corresponding

mailbox is enabled.

TMP95CU54A

2005-05-10 95CU54A-202

Mailbox transmit interrupt flag register (MBTIF)

This register is provided for mailbox transmit interrupts. Each bit in this register
corresponds to mailboxes 0 through 15. The interrupt flag for mailbox 15, the
<MBTIF15> flag, is nonexistent because mailbox 15 is the receive-only mailbox. If
mailbox “n” is set for receive, the corresponding interrupt flag in this register, the
<MBTIFn> flag, will always be read as 0.

If a message in mailbox “n” has been transmitted successfully and the mask bit
<MBIMn> is set to 1, the corresponding transmit interrupt flag <MBTIFn> will be set.
If no other bit was set before in the MBTIF register, transmit interrupt pulse INTCT
will be generated.

If, for any mailbox, the mask bit in the MBIM register is 0, the transmit interrupt
flag in the MBTIF register will not be set and no transmit interrupt pulse INTCT will
be generated. Information about a successful transmission can be read from the TA
register.

If one or more transmit interrupt flags have been set in the MBTIF register and
another interrupt condition has occurred, no interrupt will be generated, but the
corresponding flag in the MBTIF register will be set.

If there one or more transmit interrupt flags are set after clearing one or more
transmit interrupt flags, another mailbox transmit interrupt pulse INTCT will be
generated.

The interrupt flags in the MBTIF register will be cleared by writing a 1 from the
CPU to the MBTIF register. Writing a 0 has no effect. The corresponding status flags
in the TA register must be cleared separately.

Note that interrupt flags in the MBTIF register must be confirmed as 1 (active),
before clearing.

TMP95CU54A

2005-05-10 95CU54A-203

Mailbox receive interrupt flag register (MBRIF)

This register is provided for mailbox receive interrupts. Each bit in this register
corresponds to mailboxes 0 through 15. If mailbox “n” is set for transmit, the
corresponding interrupt flag in this register, the <MBRIFn> flag, will always be read
as 0.

If a message in mailbox “n” has been received successfully and the mask bit
<MBIMn> is set to 1, the corresponding receive interrupt flag <MBRIFn> will be set.
If no other bit was set before in MBRIF register, receive interrupt pulse INTCR will be
generated.

If for a mailbox the mask bit in MBIM register is 0, the receive interrupt flag in
MBRIF register will not be set and no receive interrupt pulse INTCR will be generated.
The information about a successful reception could be read from the RMP register
respectively.

If one or more receive interrupt flags have been set in MBRIF register and another
interrupt condition has been occurred, no interrupt will be generated, but the
corresponding flag in MBRIF register will be set.

If there is one or more receive interrupt flags set after clearing one or more receive
interrupt flags, another mailbox receive interrupt pulse INTCR will be generated.

The interrupt flags in MBRIF register will be cleared by writing a 1 from the CPU to
MBRIF register. Writing a 0 has no effect. The corresponding status flags in RMP
register have to be cleared separately.

Note that interrupt flags in the MBRIF register must be confirmed as 1 (active),
before clearing.

TMP95CU54A

2005-05-10 95CU54A-204

3.11.4 Description of Mode

(1) Configuration mode
The CAN controller must be initialized (set the bit configuration registers BCR1 and

BDR2) before activation. The BCR1 and BCR2 registers can only be modified when the
module is in the configuration mode. After reset, the configuration mode is active and
the <CCR> bit of the MCR register and the <CCE> bit of the GSR register are set to 1.
The CAN controller can be set to the normal operation mode by writing a 0 to the
<CCR> bit. After leaving the configuration mode, the <CCE> bit will be set to 0 and
the power-up sequence will start. The power-up sequence consists of detecting eleven
consecutive recessive bits on the CAN bus line. After the power-up sequence, the CAN
controller is bus-on and ready for operation.

When the <CCR> bit is set to 1, the CAN controller will enter the configuration mode
from the normal operation mode. After the CAN controller has entered the
configuration mode, the <CCE> bit will be set to 1. See also the flowchart in Figure
3.11.5 (Flowchart of CAN Initialization). On entering the configuration mode, the
error counter CEC, the time stamp counter TSC and the time stamp hold register will
be cleared.

Figure3.11.5 Flowchart of CAN Initialization

TMP95CU54A

2005-05-10 95CU54A-205

(2) Sleep mode
The sleep mode will be requested by writing 1 to the <SMR> bit of the MCR register.

When the CAN controller enters the sleep mode, the status bit <SMA> of the GSR
register will be set to 1.

During the sleep mode, the clock of the CAN controller is switched off. Only the
wake up logic will be active. The read value of the GSR register will be F040H, this
means there is no message in transmit buffer and the sleep mode is active (the <SMA>
bit is set to 1). Read accesses to all other registers will deliver the value 0000H. Write
accesses to all registers other than the MCR register will be denied.

The CAN controller leaves the sleep mode if a write access to the MCR register has
been detected or there is any bus activity detected on the CAN bus line (with <WUBA>
= 1). The CAN controller then begins its power-up sequence. The CAN controller waits
until detecting 11 consecutive recessive bits on the RX input line and goes to bus active
after them. The first message that initiates the bus activity cannot be received.

In sleep mode, the CAN error counters and all transmission request set bits <TRSn>
will be cleared. After leaving the sleep mode, the <SMR> bit in the MCR register and
the <SMA> bit in the GSR register will be cleared.

If the CAN controller is transmitting a message when the <SMR> bit is set, the CAN
controller will not switch to the sleep mode immediately. It will continue until a
successful transmission or after losing arbitration, or until a successful reception or an
error condition occurs on the CAN bus line. By this means, the CAN controller will
initiate no error condition on the CAN bus line.

(3) Halt mode
The halt mode will be requested by writing 1 to the <HMR> bit of the MCR register.

When the CAN controller enters the halt mode, the <HMA> bit of the GSR register will
be set. During the halt mode the CAN controller does not send or receive any messages.
The CAN controller is still active on the CAN bus line. Error Flags and Acknowledge
Flags will be sent. The CAN controller leaves the halt mode if the <HMR> bit is reset
to 0.

If the CAN controller is transmitting a message when the <HMR> bit is set, the
transmission will continue until successful , or until a lost arbitration is detected. By
this means the CAN controller will initiate no error condition on the CAN bus line.

(4) Test loopback mode
In this mode, the CAN controller can receive its own transmitted message and will

generate its own acknowledge bit. No other CAN controller is necessary for this
operation. The only supposition is that the RX and TX lines must be connected to a
CAN bus transceiver or directly together.

In the test loopback mode, the CAN controller can transmit a message from one
mailbox and receive it in another mailbox. The set-up for the mailboxes is the same as
in the normal operation mode.

The test loopback mode can only be enabled or disabled in the configuration mode.
Figure 3.11.6 shows the flowchart of the test loopback mode and the test error mode
set-up.

TMP95CU54A

2005-05-10 95CU54A-206

(5) Test error mode
The error counters can only be written when the CAN controller is in the test error

mode.
When the CAN controller is in the test error mode, both error counters will be

written at the same time with the same value (lower 8 bits). The maximum value that
can be written into the error counters is 255. Thus, the error counter value of 256
which forces the CAN controller into the bus-off mode can not be written into the error
counters.

The test error mode can only be enabled or disabled in the configuration mode.
Figure 3.11.6 shows the flowchart of the test loopback mode and the test error mode
set-up.

Figure3.11.6 Flowchart of the test loopback mode/ test error mode set-up

TMP95CU54A

2005-05-10 95CU54A-207

3.11.5 Functional Description

(1) Transmit mode
Figure 3.11.7 shows the flowchart of message transmit using the transmit interrupt

INTCT.
It is also possible to use polling instead of interrupt. In this case, “Transmit

interrupt generated? ” is replaced by “<TAn> = 1? ”. “Set <MBIMn> to 1” and “Clear
<MBTIFn>” must be removed from the flow.

Figure 3.11.7 Flowchart of message transmission

TMP95CU54A

2005-05-10 95CU54A-208

(2) Receive mode
If the CAN controller has received a message from the CAN bus line, this message

will be located in the receive buffer. The identifier of the message stored in the receive
buffer will be compared to the identifier of the mailbox. If <GAME>/<LAME> bit is set,
the global/local acceptance mask register GAM/LAM will be used. If there is one of the
following conditions found, no further compare will be performed.
• Data frame and a matching identifier in a mailbox configured as receive
• Remote frame and a matching identifier in a mailbox configured as receive
• Remote frame and a matching identifier in a mailbox configured as transmit and

<RFH> bit is set
The minimal time to save a next received message after the <RMP> bit set depends

on the configured bit timing. In the case of the data length code = 0, the minimal time
is as follows.
• Standard format: 47 bit times - 16 fSYS

• Extended format: 67 bit times - 16 fSYS

TMP95CU54A

2005-05-10 95CU54A-209

[1] Data frames
Figure 3.11.8 shows one example of the flowchart of message reception using the

receive interrupt INTCR.
It is also possible to use polling instead of the interrupt. In this case, “Receive

interrupt generated? ” is replaced by “<RMPn> = 1? ”. “Set <MBIMn> to 1” and
“Clear <MBRIFn>” must be removed from the flow.

Note1: Be sure to check <RMPn> and <MBRIFn>

Note2: If “Clear <RMPn>” is executed, and mailbox “n” receives a message before “Clear <MBRIFn>” is also
executed, then it is possible that <RMPn> will be set at 1 (<MBRIFn>=0).

Figure 3.11.8 Flowchart of message reception (example)

Set up for message
Reception

Receiving message

End of setup

Set <MCn> to 0

Set <MDn> to 1

Setup ID, <IDE>
to mailbox “n”

If necessary,
Set <LAME>/<GAME>

Setup LAM/GAM

Set <MBIMn> to 1

Set <MCn> to 1

Check
<RMPn> and <MBRIFn>

(Note1)

Read out the mailbox”n”

Message lost
(The data that was read out the

mailbox ”n” was invalid.)

Clear <RMPn>
Clear <RMLn>

<RMLn>=1？

Clear <RMPn>

New setup?

Clear <MBRIFn>

RETI

Receive interrupt
generated?

Yes No

No

Yes

Yes

No

(Note2)

(Note2)

(Note2)

TMP95CU54A

2005-05-10 95CU54A-210

[2] Remote frame
Figure 3.11.9 shows the flowchart of one example of the handling of remote

frames by using the automatic reply feature. This feature is available when the
<RFH> bit of a mailbox configured for transmission is set. To avoid data
inconsistency problems when updating the mailbox data, the CDR register is used.

Figure 3.11.9 Flowchart of remote frame handling with the automatic reply feature (example)

TMP95CU54A

2005-05-10 95CU54A-211

3.12 Serial Expansion Interface (SEI)

3.12.1 Overview

The SEI is one of the serial interfaces built into the TMP95CU54A, which can be
connected to peripheral devices, by full duplex synchronous communication protocol. The
TMP95CU54A incorporates one channel of this serial expansion interface.

The SEI can also support the Micro DMA mode corresponding to the micro DMA transfer.
(1) Features

• The master outputs the shift clock only during data transfer
• The clock polarity and phase are programmable
• The data are 8 bits long
• Either MSB first or LSB first can be selected
• Micro DMA mode support for micro DMA transfers
• Transfer rate: 4 Mbps, 2 Mbps, 1 Mbps or 250 kbps (when operating at 24 MHz)
• Error detection function

[1] Write collision detection: when writing to the shift register during data transfer
[2] Overflow detection: when receiving new data while the transfer end flag is set

(slave only)
Note: There is no Mode fault detection function. Set P6FC<P60F> which is the enable / disable

bit for Mode fault detection to “1”, and disable the Mode fault detection function.

WCOL

SOVF

Figure 3.12.1 SEI Block Diagram

TMP95CU54A

2005-05-10 95CU54A-212

3.12.2 SEI Operation

During a SEI transfer, data is simultaneously transmitted (shifted out serially) and
received serially (shifted in serially). The SEI clock (SECLK) takes synchronously the two
serial data lines (MOSI/MISO) in order to shift and sample information on the lines. A
slave selection line (SS)selects slave devices individually. A slave device not selected
cannot use the SEI bus.

(1) SEI clock phase and polarity controls

Software can select any four combinations of serial clock phase and polarity using
two bits in the SEI control register (SECR). The clock polarity is set by the <CPOL> bit,
and the clock is either active “H” or active ”L”. The clock phase <CPHA> control bit
selects one of two fundamentally different transfer formats. The clock phase and
polarity should be identical for the master SEI device and the communicating slave
device.

(2) SEI data and clock timing

The SEI programmable clock timing and data can be connected to almost any
synchronous serial device. Please see “3.12.4 SEI transfer format” for a detailed
description of the transfer format.

TMP95CU54A

2005-05-10 95CU54A-213

3.12.3 SEI Signal Lines

There are four input/output pin signals associated with the SEI transfer. Every signal
depends on the mode (master/slave) of the SEI device.

(1) SCLK

The SCLK pin functions as an output pin when the SEI is set for master, and
functions as an input pin when the SEI is set for slave.

When the SEI is set for master, the SCLK signal is supplied by the internal SEI clock
generation circuit. When the master starts transferring data, eight clock cycles are
automatically output at the SCLK pin. When the SEI is set for slave, the SCLK pin
functions as an input pin, in which case the SCLK signal from the master synchronizes
data transfers between the master and slave. The slave device ignores the SCLK
signal if the slave select SS pin is high.

In both master and slave SEI devices, data is shifted in or out at each rising or falling
edge of the SCLK signal and is sampled at the opposite edge where the data is stable.
Edge polarity is determined by the SEI transfer protocol.

(2) MISO/MOSI

The MISO and MOSI pins are used for transmitting and receiving serial data.
When the SEI is configured as a master, MISO is the data input line and MOSI is the

data output line.
When the SEI is configured as a slave, these pins reverse roles.
All SCLK pins are connected together, as are all MOSI pins and all MISO pins. Refer

to “Figure 3.12.5 Configuration of SEI system”. A single SEI device is configured as a
master, while all other SEI devices on the SEI bus are configured as slaves. The single
master drives the transfer clock and data out of its SCLK and MOSI pins to the SCLK
and MOSI pins of the slaves. One selected slave device optionally drives data out of its
MISO pin to the MISO master pin.

The SCLK, MISO and MOSI pins can be set up to function as programmable
open-drain pins.

(3) SS

The SS pin is used to enable the SEI slave for transfer and receive. If the SS pin of
a slave is inactive (high), the device ignores SCLK clocks and keeps the MISO output
pin in the high-impedance state.

TMP95CU54A

2005-05-10 95CU54A-214

3.12.4 SEI Transfer Format

The transfer format is determined by the setting of the <CPHA> bit and the <CPOL> bit
in the SECR register. The <CPHA> bit switches between two different transfer protocols.

(1) Transfer Format of <CPHA> = 0

Figure 3.12.2 shows the transfer format for a <CPHA>=0 transfer.

Figure 3.12.2 Transfer format of <CPHA>=0

In this transfer format, the first bit is sampled in on the first clock edge. This will be
on a rising edge when <CPOL> = 0 and on a falling edge when <CPOL> = 1. With
<CPOL> = 0 the shift clock will idle low, with <CPOL> = 1 it will idle high.

In master mode, when a transfer is initiated by writing new data to the SEDR
register, the new data is placed on the MOSI pin for half a clock cycle before the shift
clock starts to operate. The <BOS> bit in the SECR register determines whether the
data will be shifted out in a MSB or LSB order. After the last shift cycle, the <SEF>
flag (in Compatibility mode) or the <TSRC> flag and <TSTC> flags (in Micro DMA
mode) will be asserted.

In slave mode, the SEDR register is not allowed to be written if the SS signal is low.
A write attempt in this state will result in a write collision and the <WCOL> bit will be
asserted in the SESR register. Therefore, even if the transfer has been completed and
the <SEF> flag or <TSRC> flag bit has been asserted, software has to wait until the
SS signal goes high again before writing new data to the SEDR register. To allow the
use of a micro DMA to transfer data to the SEDR register in slave mode, the <TSTC>
flag is delayed until SS goes high.

TMP95CU54A

2005-05-10 95CU54A-215

(2) Transfer format of <CPHA> = 1
Figure 3.12.3 shows the transfer format for a <CPHA> = 1 transfer.

Figure 3.12.3 Transfer format of <CPHA> = 1

In this transfer format, the first bit is sampled in on the second clock edge. This will
be on a falling edge when <CPOL> = 0 and on a rising edge when <CPOL> = 1. If
<CPOL> = 0, the shift clock is a rising edge; with <CPOL> = 1 it is a falling edge.

In master mode, when a transfer is initiated by writing new data to the SEDR
register, the data is placed on the MOSI pin with the first edge of the shift clock. Again,
the first bit to be transferred will be determined by the <BOS> bit in the SECR
register.

Unlike in the <CPHA> = 0 format, the SEDR register is allowed to be written in
slave mode even if the SS signal is low.

In both master and slave mode, the <SEF> flag (in Compatibility mode) or the
<TSRC> flag and <TSTC> flag (in Micro DMA mode) will be asserted simultaneously
after the completion of the last shift cycle. An attempt to write the SEDR register
while the data shifting is still in progress will result in a write collision.

TMP95CU54A

2005-05-10 95CU54A-216

3.12.5 Functional Description

Figure 3.12.4 shows master-to-slave connection via the SEI.
The different nodes on a SEI bus function like a distributed shift register. When data is

sent from the MOSI pin of the master device to the corresponding pin of the slave device,
data from the slave is sent back from the MISO pin of the slave device to the corresponding
pin of the master device.

This means that data is communicated in full-duplex mode and data output and data
input are synchronized by the same clock signal. After a transfer, the data transmitted
from the 8-bit shift register is replaced with receive data.

Figure 3.12.4 Connection between Master and Slave in SEI

Figure 3.12.5 shows a configuration of the SEI system.
Port 6, the SEI output, can be set for open-drain output programmable. Therefore, this

port can be connected to multiple devices.

Figure 3.12.5 Configuration of SEI System (comprising one master and two slaves)

TMP95CU54A

2005-05-10 95CU54A-217

3.12.6 Operation Modes

SEI allows the programmer the choice of 2 fundamentally different operation modes - the
Compatibility mode and the Micro DMA mode. These operation modes differ in terms of
flag clearing, interrupt generation and whether or not - micro DMA is used. The table
below shows the differences between the two operation modes.

Table 3.12.1 Differences between the Two Operation Modes

 Compatibility Mode Micro DMA Mode

Error Flag Clearing
Reading a register with the Status
flag set, followed by SECR or
SEDR register access

Writing a “1” to the status register

Transfer Status Flag Clearing
Reading a register with the Status
flag set, followed by an access to
the data register

Writing a “1” to the status register or
by reading or writing the data register

Interrupt generation
INTSE0: <SEF> INTSE0: <WCOL> or <SOVF>

INTSE1: <TSRC>
INTSE2: <TSTC>

Micro DMA use No Yes

SEI can be switched between these operation modes, if SEI is disabled (<SEE> = 0), by
setting the <TMSE> bit in the SESR register.

TMP95CU54A

2005-05-10 95CU54A-218

3.12.7 SEI Registers

Use SEI control register SECR, SEI status register SESR and SEI data register SEDR to
set SEI.

Note: When accessing the SEI registers, at least 4 states must be inserted between SEI
register write and SEI register read. Please remember this when programming.

Example:
 LD (SEDR), data1 : write SEDR
 NOP :
 NOP :
 LD A, (SESR) : read SESR
 LD (SESR), data2 : write SESR
 NOP :
 NOP :
 LD A, (SESR) : read SESR

(1) SEI control register (SECR)

See table 3.12.2

<SEIE>: SEI interrupt enable
Compatibility mode:
0: SEI interrupts are disabled.
1: SEI interrupts are enabled. A SEI interrupt is requested if the <SEF> flag is

being asserted.
Micro DMA mode:
The <SEIE> bit is obsolete in Micro DMA mode. Only the interrupt controller
registers are used to enable or disable interrupts.

<SEE>: SEI function enable

0: SEI function is off. It is necessary to disable the SEI function to switch
between the Micro DMA mode and the compatibility mode. Wait until the
transfer in progress is completed before you clear the <SEE> bit to stop the
SEI operation.

1: SEI function is on. Before using the SEI function, make sure that the port
function is set for the SEI function.

or other instructions which do not access the SEI registers

or other instructions which do not access the SEI registers

TMP95CU54A

2005-05-10 95CU54A-219

<BOS>: Bit order select
The bit order selection bit <BOS> selects whether the data to be transferred is
MSB first or LSB first.
0: The MSB bit of the SEDR register (bit 7) will be transmitted first.
1: The LSB bit of the SEDR register (bit 0) will be transmitted first.

<MSTR>: Master/Slave mode select
0: SEI is configured as slave.
1: SEI is configured as master..

<CPOL>: Clock polarity select
0: Active “H” level clock is selected. The SECLK clock is at idle “L” level when

not transmitting..
1: Active “L” level clock is selected. The SECLK clock is at idle “H” levelwhen

not transmitting.
 Refer to figures 3.12.2 and 3.12.3.

<CPHA>: Clock phase select

<CPHA> bit selects one of two, fundamentally different transfer formats.
Refer to figures 3.12.2 and 3.12.3.

<SER1:0>:SEI bit rate select

The following table shows the relationship between the <SER1> and <SER0>
control bits and the bit rate for transfers when the SEI is operating as a master.
When the SEI is operating as a slave, the serial clock is input from the master,
therefore the <SER1> and <SER0> control bits are redundant.

Table 3.12.2 SEI transfer bit rate

Internal SEI clock: External clock divided by 3.

TMP95CU54A

2005-05-10 95CU54A-220

(2) SEI status register (SESR)

R

R

R

<SEF>: Transfer complete flag

Compatibility mode:
The <SEF> flag is automatically set to 1 at the end of a SEI transfer. The
<SEF> flag is automatically cleared by reading the SESR register with
<SEF> flag set, followed by an access of the SEDR register.
Micro DMA mode:
Always reads as undefined; writes to this flag have no effect.

<WCOL>: Write collision error flag
Compatibility mode:
The <WCOL> flag is automatically asserted if the SEDR register is written
while a transfer is in progress. The write itself has no effect on the running
transmission. The <WCOL> flag is automatically cleared by reading the
SESR register with the <WCOL> bit set followed by an access to the SEDR or
SECR register. No interrupt will be generated on the assertion of this flag.
Micro DMA mode:
The <WCOL> flag is automatically asserted if the SEDR register is written
while a transfer is in progress. The write itself has no effect on the running
transmission. The flag can only be reset by writing a 1 to it. Writing a 0 has
no effect. An interrupt will be generated on INTSE0 on a transition from 0 to
1 if the module is configured as a slave and <TASM> bit is equal to 0.

TMP95CU54A

2005-05-10 95CU54A-221

<SOVF>: Slave mode overflow error flag
Master mode:
Always reads as undefined; writes to this flag have no effect.
Slave mode:

Compatibility mode:
The <SOVF> flag is automatically asserted if a new byte has been
completely received and the <SEF> flag is still asserted. The <SOVF> flag
is automatically cleared by reading the SESR register with the <SOVF>
flag set followed by an access to the SEDR register. The <SOVF> flag will
also be cleared by switching to master mode. In Compatibility mode, no
interrupt will be generated on the assertion of the <SOVF> flag.
Micro DMA mode:
The <SOVF> flag is automatically asserted if a new byte has been
completely received and the <TSRC> flag is still asserted. The <SOVF>
flag can only be cleared by writing a 1 to it. Writing 0 to it has no effect.
INTSE0 is generated with <TASM> = 1 if the <SOVF> flag changes from 0
to 1.

<TSRC>: Receive completion flag
Compatibility mode:
Always reads as undefined; writes to this flag have no effect.
Micro DMA mode:
The <TSRC> flag is set when a receive has been completed, that is when
eight cycles have shifted on the SCLK signal. It is cleared by performing a
read operation on the SEI data register, by switching to compatibility mode,
or by writing a 1 to this flag. Writing a 0 to this flag has no effect. An
interrupt INTSE1 will be generated on the assertion of this flag.

<TSTC>: Transmit completion flag

Compatibility mode:
Always reads as undefined; writes to this flag have no effect.
Micro DMA mode:
The <TSTC> flag is set when the transmission of one byte of data is
completed, but the timing of the flag depends on the transfer format and
master/slave status. Refer to figures 3.12.2 and 3.12.3. It is cleared by
performing a write operation on the SEI data register, by switching to
compatibility mode or by writing a 1 to this flag. Writing a 0 to this flag has
no effect. An interrupt INTSE2 will be generated on the assertion on this
flag.

TMP95CU54A

2005-05-10 95CU54A-222

<TASM>: Automated shift mode (master) /INTSE0 interrupt mask (slave)
Compatibility mode:
Always reads as undefined; writes to this flag have no effect.
Micro DMA mode:
The functioning of this bit is determined by the <MSTR> bit setting.

Master mode:
0: Disables the automated shift mode.
1: Enables the automated shift mode.

In this mode, a read access to the SEI data register SEDR will perform
the following functions.
• The SEI data register will be cleared to 00 hex after it has been

read.
• A new transfer will be initiated, thus in master mode 8 low bits

will be sent, 8 new bits will be received.

The automated shift mode also works when it is combined with a Micro
DMA. It has no effect, when SEI is in slave mode.

Slave mode:
This bit functions as a mask for the interrupt INTSE0 generation of the
<SOVF> and <WCOL> flags.
0: An interrupt will be generated on the <WCOL> flag, but not on the

<SOVF> flag.
1: An interrupt will be generated on the <SOVF> flag, but not on the

<WCOL> flag.

<TMSE>: SEI mode select

0: Compatibility mode.
1: Micro DMA mode.
Selects the Micro DMA mode, which also allows Micro DMA transfers. It is
necessary to disable the SEI system before switching to the Micro DMA mode.

TMP95CU54A

2005-05-10 95CU54A-223

(3) SEI data register (SEDR)

SEI Data Register

 7 6 5 4 3 2 1 0
Bit symbol SED7 SED6 SED5 SED4 SED3 SED2 SED1 SED0

(for transmission)
Read/Write W
After Reset 0 0 0 0 0 0 0 0

SEDR

(009FH)
 7 6 5 4 3 2 1 0

Bit symbol SED7 SED6 SED5 SED4 SED3 SED2 SED1 SED0
(for receiving)

Read/Write R
 After Reset 0 0 0 0 0 0 0 0

Note) Read-modify-write prohibited.

This register is used to transmit and receive data. When the SEI system is

configured as a master, transfers are started by a software write to the SEDR register.
After once starting transmission, please write after checking that the transmission

end flag has been set by interrupt or polling when the master device writes to the
SEDR register.

Only when the <SEE> bit of the SECR register is “1”, is a read/write to the SEDR
register possible.

When the <SEE> bit is “0”, the write access is ignored and “00H” will be read.

TMP95CU54A

2005-05-10 95CU54A-224

3.12.8 SEI System Errors

Two system errors can be detected by the SEI device. The first type of error, a write
collision, indicates that an attempt has been made to write data to the SEDR while a
transfer was in progress. The second error occurs when the SEI system is configured as a
slave and a new byte of data has been completely shifted in by the remote bus master before
the old byte could be read.

(1) Write collision error

A write collision occurs if the SEDR register is written while a transfer is in progress.
Because the SEDR register is not a double buffer in the direction of the transmission,
writing before transfer to the SEDR register is completed is written directly to the SEI
shift register. Because this write corrupts any transfer in progress, a write-collision
error is generated. The transfer continues undisturbed, and the write data that caused
the error is not written to the shifter.

A write collision is normally a slave error because a slave has no control over when a
master will initiate a transfer. A master knows when a transfer is in progress, thus,
there is no excuse for a master to generate a write-collision error, although the SEI
device can detect write collisions in a master as well as in a slave.

In slave mode, a write collision is likely to occur when the master shifts faster than it
can be handled by the slave. This occurs when the slave is transferring a new value to
the data register after the master has begun the next shift cycle. In this case a write
collision occurs.

In Micro DMA mode, an interrupt on INTSE0 will occur, if the module is configured
as slave, when the <TASM> bit is set as 0 and the <WCOL> flag shows a positive edge.

(2) Slave mode overflow error

On an SEI bus, the transmission bit rate is determined by the master. At higher bit
rates the problem arises whereby a slave might not be able to follow the transmission
of a master. This means that the data is shifted in faster than it can be processed by
the slave. Therefore the SEI device offers the <SOVF> flag in its status register which
allows the detection of a possible loss of data.

The <SOVF> flag will be asserted, when,

• The SEI module is configured as a slave.
• An old byte of data is still waiting to be read when a new byte of data has been

completely received.
When <SOVF> is set, the SEDR has been overwritten by new byte data.
Since this error is only arises in the slave mode, the <TASM> bit can be used as an

interrupt mask for this flag. An interrupt is generated on INTSE0 only in Micro DMA
mode and the <TASM> bit is 1, if the <SOVF> flag in the status register is asserted.

TMP95CU54A

2005-05-10 95CU54A-225

3.12.9 Interrupt Generation

Interrupt processing differs for the two SEI operating modes, which can be selected using
the <TMSE> bit in the SESR register. The SEI module is connected to three interrupt
channels named INTSE0, INTSE1 and INTSE2.

(1) Compatibility mode

In compatibility mode only the INTSE0 is used. This channel generates an interrupt,
if the <SEF> flag in the SESR register shows a transition from 0 to 1. The <SEIE> bit
is used as a global interrupt enable/disable.

 Interrupt on <SEF>

(2) Micro DMA mode

In Micro DMA mode all three interrupt channels are used to allow Micro DMA
transfers to and from the SEI data register. Interrupt channel 0 generates an
interrupt on two different sources. The first type of interrupt is generated on a
transition of the <WCOL> flag from 0 to 1 if the module is in slave mode with the
<TASM> bit equal to 0. The second type of interrupt is generated on transition of the
<SOVF> flag from 0 to 1 if the module is in slave mode with the <TASM> bit equal to 1.

After a completed transfer, both the <TSRC> flag and the <TSTC> flag in the SESR
register are asserted simultaneously. However, there is an exception for <CPHA> = 0
in slave mode. Please see “4.1 transfer format of <CPHA> = 0”. Both flags trigger their
own interrupt.

The <TSRC> flag generates an interrupt on INTSE1 on a transition from 0 to 1. The
<TSRC> flag can be cleared by either reading the SEDR register or by writing a 1 value
to this flag.

The <TSTC> flag generates an interrupt on INTSE2 on a transition from 0 to 1. The
<TSTC> flag is cleared by either writing the SEDR register or by writing a 1 value to
this flag.

For the use of Micro DMAs, INTSE1 and INTSE2 interrupts can be used to trigger a
Micro DMA.

INTSE1 interrupt: triggers a Micro DMA read of data from the SEDR register.
INTSE2 interrupt: triggers a Micro DMA write to the SEDR register.

Thus a new transfer is initiated.

SEI interrupt channel 0 (INTSE0)
Interrupt on

<WCOL> Note1) or <SOVF>Note2)
SEI interrupt channel 1 (INTSE1) Interrupt on <TSRC>
SEI interrupt channel 2 (INTSE2) Interrupt on <TSTC>

Note 1: In slave mode, when <TASM> = 0
Note 2: In slave mode, when <TASM> = 1

In Micro DMA mode the <SEIE> bit is redundant. The Interrupts are individually
disabled at the interrupt controller.

TMP95CU54A

2005-05-10 95CU54A-226

3.12.10 Use of Micro DMA for SEI (Micro DMA mode)

The use of Micro DMA for larger SEI transfers enables the speeding up of communication
on the SEI by
• reducing CPU load for interrupt processing,
• reducing the time gap between two successive transfers.

The Micro DMA transfers can be used in both master and slave modes.

(1) Read/Write Micro DMA transfer
Set the <TMSE>bit of the SESR register to 1 to set to micro DMA mode. Two Micro

DMA channels are configured in a way that both the values to be shifted out can be
determined and the values shifted in can be stored. However, the transfer will be
handled completely by the Micro DMA controller.
[1] Initiation

Two Micro DMA channels must be set up for the transfer. One Micro DMA is
triggered on the SEI interrupt channel 1 (INTSE1) to transfer the value that was
received from the SEI data register to memory. The other cannel (INTSE2) is used
to write new data from the memory to the SEI data register. This setting is used to
re-initiate transfers in the master mode.

The Micro DMA with the lower channel has to be assigned to the INTSE1
interrupt since it takes precedence over the Micro DMA with the higher channel
number.

The Micro DMA transfer is initiated the first time by writing the first transfer
value to the SEI data register. The following transfers will be handled
automatically by the Micro DMA controller.

Table 3.12.3 SEI setting for micro DMA transfer (Read/Write)

[2] Micro DMA transfer

Once initiated the Micro DMAs wait to be triggered by a completed transfer. On
a completed transfer, both <TSRC> and <TSTC> flags are set to 1, and both the
SEI receive completed interrupt pulse INTSE1 and the SEI transmit completed
interrupt pulse INTSE2 are generated. Since the Micro DMA channel with the
lower channel number takes precedence, the Read Micro DMA is performed before
the Write Micro DMA. The Read Micro DMA reads the value from the SEI data
register and stores the value at the location specified within the Micro DMA
control registers. The read access also clears the <TSRC> flag in effect. After this
the Write Micro DMA transfers a value from a specified memory address to the SEI
data register. The write access to the data register automatically clears the
<TSTC> bit in the SEI status register and starts a new transfer when the module
is in master mode. After each Micro DMA transfer, the count registers for both
Micro DMA are decreased. This procedure continues until the counters reach the
value of 0. A Micro DMA interrupt will be generated to indicate the end of the
Micro DMA transfer. An interrupt service routine triggered on the end of the
Micro DMA transfer can be used to re-initiate Micro DMA transfers.

TMP95CU54A

2005-05-10 95CU54A-227

Figure 3.12.7 Flow for Micro DMA read/write transfer

Start

Wait on transfer completed

<TSRC>, <TSTC> = 1
generates INTSE1, INTSE2

Transfer beginning

Write data in the SEDR register before
transfer when SEI is slave mode.

If SEI is setup as a master, start the first
write transfer by writing the first value to

the SEDR register.

Register initial setting

Initiation SEI for micro CMA mode
Refer to table 3.12.3

Set up lower micro DMA channel for
automated read, triggered on INTSE1
Set up higher micro DMA channel for

automated write. Triggered on INTSE2
Reading SEDR by micro DMA transfer
Since the read micro DMA owns the

 lower channel number the read
micro DMA is processed first

Micro DMA is written at the address which
reads SEDR register and was set up by

transmission destination address register.

Depending on the setup of transmission
mode register, transmission destination

address register serves as address
increment, decrement , or fixation

Decrease micro DMA counter
The read-access to the SEDR register

automatically clears the <TSRC> flag to 0.

Micro DMA reads the address set by
transmitting agency address register, and

writes it to SEDR register.

Depending on the setup of transmission
mode register, transmission destination

address register serves as address
increment, decrement, or fixation.

The write-access to the SEDR register
automatically clears the <TSTC> flag to 0.

Decrease micro DMA counter

Write micro DMA transfer

Generate micro DMA transfer end
interrupts for both channels

END

Micro DMA counter =0 ?

YES

NO

TMP95CU54A

2005-05-10 95CU54A-228

(2) Read-only Micro DMA transfer
This mode is used to shift in lager blocks of data, while “don’t care data” is shifted out

(e.g.: reads from serial EEPROM). Only a single Micro DMA is used to store the data
read from the SEI data register to a specified RAM area.

[1] Initiation

For this mode the module has to be configured for Micro DMA mode by asserting
the <TMSE> bit in the SESR register. When SEI is acting as master, the <TASM>
bit has to be set additionally to allow the automated shifting. Just one Micro DMA
has to be set up to transfer the received data to a memory location specified within
the Micro DMA destination address register. The SEI receive completion interrupt
INTSE1 is used to trigger this Micro DMA. The SEI transmit completion interrupt
INTSE2 is disabled at the interrupt controller. If SEI is set up as a master, the
first transfer has to be initiated by writing the SEI data register.

Table 3.12.4 SEI setting for micro DMA transfer (read-only)

[2] Micro DMA transfer
After initiating the first transfer, the Micro DMA waits for the transfer to be

completed. With the completion of the transfer both the <TSRC> and <TSTC>
flags in the SEI status register are asserted. On the assertion of the <TSRC> flag
an interrupt is generated to trigger the Micro DMA. The <TSTC> flag will be
asserted simultaneously and will remain set till the end of the block transfer.

The Micro DMA moves the received value from the SEI data register to the
memory location specified in its destination address register. When the SEDR
register is read, the SEDR register (shift register) is cleared to “00H”
automatically because <TASM> bit is 1. Simultaneously, a new transfer is started
automatically. This procedure will repeat until the Micro DMA counter reaches a
value of 0.

Moreover, after the first transfer is completed, the <TSTC> flag remains as set
at 1, unless cleared.

TMP95CU54A

2005-05-10 95CU54A-229

Figure 3.12.8 Flowchart for Micro DMA read-only transfer

Start

Wait on transfer completed

<TSRC> = 1, generates INTSE1

Transfer beginning

If SEI is acting as a master:
Start the first transfer by writing

the SEDR register.

Read micro DMA transfer

Micro DMA is written at the address which
reads SEDR register and was set up by

transmission destination address register

Depending on the setup of transmission
mode register, transmission destination

address register serves as address
increment, decrement , or fixation.

Decrease micro DMA counter
The read-access to the SEDR register

automatically clears <TSRC> flag

Generate micro DMA transfer end
interrupts

END

Micro DMA counter =0 ?

YES

NO

Register initial setting

Initiation of SEI for micro DMA mode
Refer to table 3.12.4

If SEI is acting as a master; <TASM>=1
(Default: <TASM> = 0)

Setup micro DMA channel for automated
read, triggered on INTSE1

When <TASM> = 1
1. Clears SEDR register (00H)
2. Starts a new transfer automatically
3. Eight new bits are shifted in

TMP95CU54A

2005-05-10 95CU54A-230

(3) Write-only Micro DMA transfer
The write-only transfer mode is used to transmit larger blocks of data while the

incoming data is ignored. Only a single Micro DMA is used to transfer new transmit
data from a memory location specified by the Micro DMA source address register to the
SEI data register.

[1] Initiation

For this mode the module has to be configured for Micro DMA mode by asserting
the <TMSE> bit in the SESR register. One of the Micro DMA channels has to be
set up for the automated write to the SEI data register. This Micro DMA is
triggered by the SEI transmit completion interrupt INTSE2. The SEI receive
completion interrupt INTSE1 is disabled at the interrupt controller. If SEI is set
up as a master, the first transfer is initiated by writing the first value to the SEI
data register.

Table 3.12.5 SEI setting for micro DMA transfer (write-only)

[2] Micro DMA transfer
After starting the first transfer, the Micro DMA waits for the transfer to be

completed. On completion, both the <TSRC> and <TSTC> flags in the SEI status
register are asserted. Disregard the <TSRC> flag and the <SOVF> flag as they are
no longer used. After the first transfer is completed, the <TSRC> flag remains as
set at 1, unless cleared. If once set at 1, the <SOVF> flag also remains at 1 unless
cleared. The <TSTC> flag generates an interrupt, which will trigger the Micro
DMA transfer.

The Micro DMA reads a value from the memory address specified in its source
register and transfers it to the SEI data register. The write access to the SEI data
register clears the <TSTC> flag and starts a new transfer on the SEI bus when the
module is in master mode. This procedure continues until the Micro DMA counter
reaches a value of 0.

TMP95CU54A

2005-05-10 95CU54A-231

Figure 3.12.9 Flowchart for Micro DMA write-only transfer

Start

Wait on transfer completed

<TSTC> = 1, generates INTSE2

Transfer beginning

If SEI is acting as a master: Start the first
transfer by writing the SEDR register

Write micro DMA transfer

Micro DMA reads the address set up by
transmitting agency address register, and

writes it to SEDR register
Depending on the setup of transmission
mode register, transmission destination

address register serves as address
increment, decrement, or fixation.

Decrease micro DMA counter
The write-access to the SEDR register

automatically clears <TSTC> flag

Generate micro DMA transfer end
interrupts

End

Micro DMA counter =0 ?

YES

NO

Register initial setting

Initiation SEI for micro DMA mode.
Refer to table 3.12.5

Setup micro DMA channel for automated
write, triggered on INTSE2

TMP95CU54A

2005-05-10 95CU54A-232

3.13 Watchdog Timer (Runaway Detection Timer)

The TMP95CU54A incorporates a watchdog timer for detecting a runaway (out-of-control)
condition.

The watchdog timer (WDT) returns the CPU to its normal state when it detects the start of a
CPU runaway due to, for example, noise. When the watchdog timer detects a runaway, it
generates an INTWD (non-maskable) interrupt to notify the CPU of the condition.

In addition, the runaway detection result can be used for a forcible reset of the
microcontroller itself. The watchdog timer consists of a 22-step binary counter with 2/fc as the
input clock, and a control block. Figure 3.13.1 is a block diagram of the watchdog timer (WDT).

Figure 3.13.1 Block diagram of watchdog timer

TMP95CU54A

2005-05-10 95CU54A-233

3.13.1 Watchdog timer registers

The watchdog timer (WDT) is controlled by two control registers. Figure 3.13.2 shows
watchdog timer mode control register WDMOD and watchdog timer control register
WDCR.

Figure 3.13.2 Watchdog Timer Related Registers

TMP95CU54A

2005-05-10 95CU54A-234

(1) Watchdog timer mode control register (WDMOD)

[1] Setting watchdog timer detection time <WDTP1:0>
This 2-bit register is used to set the watchdog timer interrupt time for detecting

a runaway. After a reset, WDMOD <WDTP1:0> is set to 00, which sets a detection
time of 216/fc [s]. (The number of states is approximately 32,768.)

[2] Watchdog timer enable/disable control <WDTE>
After a reset, WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.
Disabling the watchdog timer requires both clearing this bit to 0 and writing the

disable code B1H in watchdog timer control register WDCR. This two-step process
is an insurance against an out-of-control system disabling the watchdog timer.

To return from disable state to enable state, simply set <WDTE> to 1.
[3] Runaway detection time internal reset control <RESCR>

This register determines whether or not the watchdog timer resets itself on
detection of a runaway. Setting WDMOD <RESCR> to 1 forcibly resets the
microcontroller after detection of a runaway. On reset, <RESCR> is initialized to 0.
Therefore, detection of a runaway will not trigger an internal reset. In such a case,
the watchdog timer holds the runaway detection state until the clear code is
written to WDCR.

(2) Watchdog timer control register WDCR

This register is used to disable the watchdog timer functions and to clear the binary
counter.
• Disable control

After clearing WDMOD<WDTE> to 0, write the disable code B1H to WDCR to
disable the watchdog timer.

Note: X : Don’t care − : No change

• Watchdog timer clear control
Writing clear code 4EH to WDCR clears the binary counter and resumes the

count.

TMP95CU54A

2005-05-10 95CU54A-235

3.13.2 Description of operation

After the detection time set by the watchdog timer mode register WDMOD <WDTP1:0>
is reached, the watchdog timer generates interrupt INTWD. The watchdog timer detection
time can be selected from 216f/c, 218f/c, 220f/c, and 222f/c. The binary counter for the
watchdog timer must be cleared to 0 by software (by instruction) before the INTWD
interrupt is generated. If the CPU malfunctions (is out of control) due to factors such as
noise, and does not execute an instruction to clear the binary counter, the binary counter
overflows and generates interrupt INTWD. The CPU interprets the INTWD interrupt as a
malfunction (runaway condition) detection signal, which can be used to start
program-based anti-malfunction measures to return the system to normal (normal mode).

Runaway detection can also be used for an internal reset (reset mode). To perform an
internal reset by runaway detection, first set WDMOD <RESCR> to 1.

The INTWD interrupt generation cycle is twice the watchdog timer detection time
selected by <WDTP1:0>.

Figure 3.13.3 Normal Mode

Figure 3.13.4 Reset Mode

The watchdog timer operates during RUN and IDLE2 modes. While an INTWD
interrupt does not occur during IDLE2 mode, to prevent an INTWD interrupt being
triggered immediately after the halt release, disable the watchdog timer. The watchdog
timer is halted in IDLE1 and STOP modes.

As the binary counter continues counting during bus release (when BUSAK goes low),
set the runaway detection time in accordance with the bus release time. If the watchdog
timer detects a runaway condition during bus release, the watchdog timer generates an
INTWD interrupt immediately after the bus release.

The watchdog timer starts operating immediately after reset release.

TMP95CU54A

2005-05-10 95CU54A-236

Example: [1] Clear the binary counter.

 [2] Set the watchdog timer detection time to 218/fc.

 [3] Disable the watchdog timer.

 [4] Select IDLE1 mode.

 [5] Select IDLE2 mode.

 [6] Select STOP mode. (Warm-up time 216/fc)

Note: X : Don’t care − : No change

TMP95CU54A

2005-05-10 95CU54A-237

3.14 Bus Release Function

The TMP95CU54A has a bus request pin (BUSRQ , shared with P53) for releasing the bus,
and a bus acknowledge pin (BUSAK , shared with P54). These pins are set by the P5CR and
P5FC registers.

3.14.1 Description of operation

When a low level signal is input to the BUSRQ pin, the TMP95CU54A recognizes a bus
release request. When the current bus cycle terminates, the address bus (A23 to A0) and
the bus control signals (RD, WR , HWR) first go high. Then these signals and the data
bus (D15 to D0) output buffer are set to off, and the BUSAK pin outputs a low signal. This
sequence indicates that the bus is released.

During bus release, TMP95CU54A disables all access to the internal I/O registers,
although internal I/O functions are not affected. Accordingly, the watchdog timer continues
to count up during bus release. When using the bus release function, set the runaway
detection time in accordance with the bus release time.

3.14.2 Pin states when bus is released

Table 3.14.1 shows the pin states when the bus is released.

Table 3.14.1 Pin States at Bus Release

TMP95CU54A

2005-05-10 95CU54A-238

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

TMP95CU54A

2005-05-10 95CU54A-239

4.2 DC Electrical Characteristics

Vcc = +5 V ±10%, Ta = −40 to +85°C (fc = 8 to 24 MHz)

Refer: IDAR definition diagram

TMP95CU54A

2005-05-10 95CU54A-240

4.3 AC Electrical Characteristics

Vcc = +5 V ±10%, Ta = −40 to +85°C

AC measuring conditions
• Output level: High 2.2 V / Low 0.8 V, CL = 50 pF
• Input level: High 2.4 V / Low 0.45 V (D0 to D15)

 High 0.8×Vcc / Low 0.2×Vcc (except for D0 to D15)

TMP95CU54A

2005-05-10 95CU54A-241

(1) Read cycle

(2) Write cycle

TMP95CU54A

2005-05-10 95CU54A-242

4.4 Serial Channel Timing

(1) I/O interface mode

[1] SCLK input mode

[2] SCLK output mode

(2) UART mode (SCLK0 to 1 external input)

TMP95CU54A

2005-05-10 95CU54A-243

4.5 AD Conversion Characteristics

4.6 Event Counter (External Input Clocks: TI0, TI4, TI8, TI9, TIA, TIB)

4.7 Interrupt Operation

TMP95CU54A

2005-05-10 95CU54A-244

4.8 Bus Request/Bus Acknowledge Timing

Note 1: When BUSRQ goes to low level to request bus release, if the current bus cycle is not yet complete
due to a wait, the bus is not released until the wait is completed.

Note 2: The dotted line indicates only that the output buffer is off, not that the signal is at middle level.
Immediately after bus release, the signal level prior to the bus release is held dynamically by the
external load capacitance. Therefore, designs should allow for the fact that when using an external
resistor or similar to fix the signal level while the bus is released, after bus release, a delay occurs
before the signal goes to its fixed level (due to the CR time constant). The internal programmable
pull-up resistor continues to function in accordance with the internal signal level.

TMP95CU54A

2005-05-10 95CU54A-245

5. List of Special Function Registers (SFR) and the Mailbox RAM
The special function registers (SFR), which control the input/output ports and peripheral

components, are allocated 160 bytes within the 000000H to 00009FH address range and 64 bytes
within the 002300H to 00233FH address range.

The mailbox RAM is allocated 256 bytes within the 002200H to 0022FFH address range.
The registers built into the TMP95CU54A cannot be accessed from outside the TMP95CU54A.

(1) Input/output port

(2) Input/output port control

(3) Timer control

(4) Serial channel control

(5) Interrupt control

(6) Watchdog timer control

(7) Bus Width/wait controller

(8) AD converter control

(9) Serial Expansion interface control

(10) CAN controller

Table structure

(Supplement for symbols used in Table)
[1] Read/Write

• R/W : Both readable and writable
• R : Readable
• W : Writable
• *R/W : Read-modify-write (RMW) instructions are prohibited for controlling ON/OFF

of the pull-up resistors.
• R/S : Enable Read / Set (When “1” is written)
• R/C : Enable Read / Clear (When “1” is written)

[2] RMW prohibited
• Cannot be read, modified, or written. (Cannot use the following instructions: EX, ADD,

ADC, SUB, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC,
RL, RR, SLA, SRA, SLL, SRL, RLD, RRD)

TMP95CU54A

2005-05-10 95CU54A-246

Table 5.1 List of TMP95CU54A Special Function Register Addresses (1/2)

TMP95CU54A

2005-05-10 95CU54A-247

Table 5.1 List of TMP95CU54A Special Function Register Addresses (2/2)

(Reserved)
(Reserved)

(Reserved)
(Reserved)

TMP95CU54A

2005-05-10 95CU54A-248

Table 5.2 List of TMP95CU54A Mailbox RAM Addresses (1/2)

TMP95CU54A

2005-05-10 95CU54A-249

Table 5.2 List of TMP95CU54A Mailbox RAM Addresses (2/2)

TMP95CU54A

2005-05-10 95CU54A-250

(1) Input/output ports

AN3/

TMP95CU54A

2005-05-10 95CU54A-251

(2) Input/output port control (1/2)

TMP95CU54A

2005-05-10 95CU54A-252

Input/output port control (2/2)

TMP95CU54A

2005-05-10 95CU54A-253

(3) Timer control (1/4)

TMP95CU54A

2005-05-10 95CU54A-254

Timer control (2/4)

TMP95CU54A

2005-05-10 95CU54A-255

Timer control (3/4)

TMP95CU54A

2005-05-10 95CU54A-256

Timer control (4/4)

TMP95CU54A

2005-05-10 95CU54A-257

(4) Serial channel control (1/2)

Undefined

Undefined

0

TMP95CU54A

2005-05-10 95CU54A-258

Serial channel control (2/2)

TMP95CU54A

2005-05-10 95CU54A-259

(5) Interrupt control (1/3)

TMP95CU54A

2005-05-10 95CU54A-260

Interrupt control (2/3)

TMP95CU54A

2005-05-10 95CU54A-261

Interrupt control (3/3)

(6) Watchdog timer control

TMP95CU54A

2005-05-10 95CU54A-262

(7) Bus width/wait controller (1/2)

TMP95CU54A

2005-05-10 95CU54A-263

Bus width/wait controller (2/2)

(8) AD converter control (1/2)

TMP95CU54A

2005-05-10 95CU54A-264

AD converter control (2/2)

TMP95CU54A

2005-05-10 95CU54A-265

(9) Serial expansion interface control

See table 3.12.1

R

R R

TMP95CU54A

2005-05-10 95CU54A-266

(10) CAN controller (1/5)

TMP95CU54A

2005-05-10 95CU54A-267

CAN controller (2/5)

TMP95CU54A

2005-05-10 95CU54A-268

CAN controller (3/5)

TMP95CU54A

2005-05-10 95CU54A-269

CAN controller (4/5)

Note)

TMP95CU54A

2005-05-10 95CU54A-270

CAN controller (5/5)

TMP95CU54A

2005-05-10 95CU54A-271

6. Diagram of Equivalent Circuit in Port Block
• Reading circuit diagrams

The TMP95CU54A uses essentially the same gate symbols as the standard CMOS logic IC
(74HCxxx) series.

The following lists the special symbols.
 STOP: This symbol sets the HALT mode setting register to STOP mode (WDMOD

<HALTM1:0> = 0, 1). When the CPU executes the HALT instruction, STOP is
active 1.
Note that when the drive enable bit WDMOD<DRVE> is set to 1, STOP remains
at 0.

• The input protection resistor operates in the range of tens to hundreds of ohms.

■ P0 (D0 to D7), P1 (D8 to D15), P2 (A16 to A23), P31 to P37 (A9 to A15), P4 (A0 to A7)

■ P30 (A8)

■ P50 (RD), P51 (WR)

TMP95CU54A

2005-05-10 95CU54A-272

■ P52 to 55, P81, P82, P84, P85, P86, P87

■ P56 (INT0)

■ P57 (CLKOUT)

■ P70 (INT1), P72 (INT2), P73 (INT3), P75 (INT4)

TMP95CU54A

2005-05-10 95CU54A-273

■ P60, P71, P74, P9

■ P61 (MOSI), P62 (MISO), P63 (SCLK)

■ P80 (TxD0), P83 (TxD1)

■ PA0 to 2 (AN0 to 2), PA4 to 7 (AN4 to 7)

TMP95CU54A

2005-05-10 95CU54A-274

■ PA3 (AN3)

■ NMI

■ CLK

TMP95CU54A

2005-05-10 95CU54A-275

■ EA

■ 16AM8/

■ RESET

■ X1, X2

■ VREFH, VREFL

TMP95CU54A

2005-05-10 95CU54A-276

7. Use Precautions and Restrictions

(1) Special Notations and Words

[1] Description of internal I/O registers: Register symbol<bit symbol>
Example: T8RUN<T0RUN> … The T0RUN bit of the T8RUN register

[2] Read-modify-write instructions
Instructions which tell the CPU to read the data in memory, manipulate them, then

write them back to memory are called read-modify-write instructions.
Example 1) SET 3, (T8RUN) … Sets bit 3 of the T8RUN register.
Example 2) INC 1, (100H) … Adds 1 to the data at address 100H.

• TLCS-900 read-modify-write instructions
Conversion instruction
 EX (mem), R
Arithmetic operations
 ADD (mem), R/# ADC (mem), R/#
 SUB (mem), R/# SBC (mem), R/#
 INC #3, (mem) DEC #3, (mem)
Logic operations
 AND (mem), R/# OR (mem), R/#
 XOR (mem), R/#
Bit manipulation
 STCF #3/A, (mem) SET #3, (mem)
 RES #3, (mem) TSET #3, (mem)
 CHG #3, (mem)
Rotate, shift
 RLC (mem) RRC (mem)
 RL (mem) RR (mem)
 SLA (mem) SRA (mem)
 SLL (mem) SRL (mem)
 RLD A, (mem) RRD A, (mem)

[3] One state
The single cycle resulting from dividing the oscillation frequency by 2 is called “one

state”.
Example: At oscillation frequency 24 MHz
 2/24 MHz = 83 ns = 1 state

TMP95CU54A

2005-05-10 95CU54A-277

(2) Use Precautions and Limitations

[1) EA pin, 16/8ΑΜ pin
This pin is connected to the VCC pin. Do not alter the level while the pin is active.

[2] Warm-up counter
When releasing STOP mode (by interrupt, for example) in a system that uses an

external oscillator, a warm-up time is required until the system clock is output. The
warm-up counter operates during the warm-up time.

[3] Programmable pull-up resistor
The pull-up resistor of a port can only be set to programmable or non-programmable in

input port mode. When using a port as an output port, its pull-up resistor cannot be set to
programmable.

[4] Watchdog timer
As the watchdog timer is enabled after a reset, disable the watchdog timer when it is not

required.
Note that during bus release, the I/O block, including the watchdog timer, still operates.

[5] CPU (Micro DMA)
Only “LDC cr, r” and “LDC r, cr” can write or read data to or from control registers (eg,

transfer source register DMASx) in the CPU.

[6] As this device does not support minimum mode, do not use the MIN instruction.

[7] POP SR instruction
Please execute POP SR instruction during DI condition.

[8] Releasing the HALT mode by requesting an interruption

 Usually, interrupts can release all halts status. However the interrupts (= NMI and
INT0) which can release the HALT mode may not be able to do so if they are input during
the period when the CPU is shifting to the HALT mode (for about 3 clock of fc) with IDLE1
or STOP mode (RUN and IDLE2 are not applicable to this case). (In this case, an interrupt
request is kept on hold internally)

 If another interrupt is generated after it has shifted to completely HALT mode, halt
status can be released without difficulty. The priority of this interrupt is compared with
that of the interrupt kept on hold internally, and the interrupt with the higher priority is
handled first followed by the other interrupt.

