IRF6718L2TRPBF Datasheet PDF - International Rectifier


www.Datasheet-PDF.com

IRF6718L2TRPBF
International Rectifier

Part Number IRF6718L2TRPBF
Description DirectFET Power MOSFET
Page 10 Pages

IRF6718L2TRPBF datasheet pdf
View PDF for PC
IRF6718L2TRPBF pdf
View PDF for Mobile


No Preview Available !

IRF6718L2TRPbFwww.DataShPeDet4U- .9co7m395B
l RoHS Compliant Containing No Lead and Bromide 
l Dual Sided Cooling Compatible 
l Ultra Low Package Inductance
l Very Low RDS(ON) for Reduced Conduction Losses
l Optimized for Active O-Ring / Efuse Applications
l Compatible with existing Surface Mount Techniques 
IRF6718L2TR1PbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
25V max ±20V max 0.50m@10V 1.0m@4.5V
Qg tot Qgd Qgs2 Qrr Qoss Vgs(th)
64nC 20nC 9.4nC 67nC 50nC 1.9V
Applicable DirectFET Outline and Substrate Outline 
S1 S2 SB
M2
M4
L6 DirectFET™ ISOMETRIC
L4 L6 L8
Description
The IRF6718L2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of a D-pak. The DirectFET package is compatible with existing
layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems.
The IRF6718L2TRPbF has extremely low Si Rdson coupled with ultra low package resistance to minimize conduction losses. The
IRF6718L2TRPbF has been optimized for parameters that are critical in reliable operation on Active O-Ring / Efuse / hot swap applications.
Absolute Maximum Ratings
Parameter
VDS Drain-to-Source Voltage
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Gate-to-Source Voltage
eContinuous Drain Current, VGS @ 10V
eContinuous Drain Current, VGS @ 10V
fContinuous Drain Current, VGS @ 10V
gPulsed Drain Current
hSingle Pulse Avalanche Energy
ÃgAvalanche Current
4
ID = 61A
3
2
1
TJ = 25°C
0
24
TJ = 125°C
68
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
Max.
25
±20
61
52
270
490
530
49
Units
V
A
mJ
A
14.0
12.0
10.0
8.0
ID= 49A
VDS= 20V
VDS= 13V
6.0
4.0
2.0
0.0
0
20 40 60 80 100 120 140 160 180
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.44mH, RG = 25, IAS = 49A.
1
01/26/2010



No Preview Available !

IRF6718L2TR/TR1PbF
www.DataSheet4U.com
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
∆ΒVDSS/TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
25
–––
–––
–––
VGS(th)
VGS(th)/TJ
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
1.35
–––
–––
–––
IGSS
Gate-to-Source Forward Leakage
–––
Gate-to-Source Reverse Leakage
–––
gfs Forward Transconductance
820
Qg Total Gate Charge
Qgs1 Pre-Vth Gate-to-Source Charge
Qgs2 Post-Vth Gate-to-Source Charge
Qgd Gate-to-Drain Charge
Qgodr
Gate Charge Overdrive
Qsw Switch Charge (Qgs2 + Qgd)
Qoss Output Charge
RG Gate Resistance
td(on)
Turn-On Delay Time
tr Rise Time
td(off)
Turn-Off Delay Time
tf Fall Time
Ciss Input Capacitance
Coss Output Capacitance
Crss Reverse Transfer Capacitance
Diode Characteristics
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Parameter
Min.
IS Continuous Source Current –––
(Body Diode)
ISM Pulsed Source Current
–––
(Body Diode) g
VSD Diode Forward Voltage
trr Reverse Recovery Time
Qrr Reverse Recovery Charge
–––
–––
–––
Typ.
–––
11
0.50
1.0
1.90
-7.6
–––
–––
–––
–––
–––
64
18
9.4
20
16.6
29.4
50
0.90
67
140
47
53
8910
2310
1115
Typ.
–––
–––
–––
39
67
Max. Units
Conditions
–––
–––
0.70
1.4
2.35
V VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mVGS = 10V, ID = 61A i
VGS = 4.5V, ID = 49A i
V VDS = VGS, ID = 150µA
––– mV/°C
1.0
150
100
-100
–––
µA VDS = 20V, VGS = 0V
VDS = 20V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
S VDS = 13V, ID = 49A
96
––– VDS = 13V
––– nC VGS = 4.5V
––– ID = 49A
––– See Fig. 18
–––
––– nC VDS = 16V, VGS = 0V
–––
––– VDD = 13V, VGS = 4.5V i
––– ns ID = 49A
––– RG= 6.8
–––
––– VGS = 0V
––– pF VDS = 13V
––– ƒ = 1.0MHz
Max. Units
Conditions
61 MOSFET symbol
A showing the
490 integral reverse
p-n junction diode.
1.0 V TJ = 25°C, IS = 49A, VGS = 0V i
59 ns TJ = 25°C, IF = 49A
100 nC di/dt = 200A/µs i
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width 400µs; duty cycle 2%.
2
www.irf.com



No Preview Available !

IRF6718L2TR/TR1PbFwww.DataSheet4U.com
Absolute Maximum Ratings
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
ePower Dissipation
ePower Dissipation
fPower Dissipation
Parameter
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
Thermal Resistance
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Parameter
eJunction-to-Ambient
jJunction-to-Ambient
kJunction-to-Ambient
flJunction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
Max.
4.3
3.0
83
270
-55 to + 175
Typ.
–––
12.5
20
–––
1.0
0.029
Max.
35
–––
–––
1.8
–––
Units
W
°C
Units
°C/W
W/°C
100
D = 0.50
10 0.20
0.10
0.05
1 0.02
0.01
0.1
0.01
R 1R 1
R 2R 2
R 3R3
R 4R 4
Ri (°C/W) τi (sec)
τJ τJ
τ1 τ1
τ2 τ2
τ3 τ3
τ4 τ4
τAτA
12.2942
14.4246
2.07265
18.10679
2.626824
0.007811
Ci= τi/Ri
Ci= τi/Ri
6.20859 0.239314
0.001
0.0001
1E-006
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
1E-005 0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
10 100 1000
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
(At lower pulse widths ZthJA & ZthJC are combined)
Notes:
ƒ Surface mounted on 1 in. square Cu board, steady state.
‰ Mounted on minimum footprint full size board with metalized
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
ˆ Used double sided cooling, mounting pad with large heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
3



No Preview Available !

IRF6718L2TR/TR1PbF
1000
100
TOP
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
1000
100
www.DataSheet4U.com
TOP
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
1
2.5V
0.1
0.1
1
60µs PULSE WIDTH
Tj = 25°C
10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
1000
VDS = 15V
60µs PULSE WIDTH
100
10
TJ = 175°C
TJ = 25°C
1 TJ = -40°C
0.1
12345
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
100000
10000
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
Coss
1000
Crss
2.5V
10
0.1
1
60µs PULSE WIDTH
Tj = 175°C
10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Output Characteristics
2.0
ID = 61A
1.5
VGS = 10V
VGS = 4.5V
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
Fig 7. Normalized On-Resistance vs. Temperature
0.90
0.80
Top
Bottom
Vgs = 6.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 12V
Vgs = 14V
Vgs = 16V
Vgs = 18V
TJ = 25°C
0.70
0.60
100
1
10 100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0.50
0
50 100 150 200
Fig 9. TyIpDi,cDarlaOin nC-uRrreenstis(Ata) nce vs.
Drain Current and Gate Voltage
www.irf.com




IRF6718L2TRPBF datasheet pdf
Download PDF
IRF6718L2TRPBF pdf
View PDF for Mobile


Similiar Datasheets : IRF6718L2TRPBF

Index :   0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z   

This is a individually operated, non profit site. If this site is good enough to show, please introduce this site to others.
Since 2010   ::   HOME   ::   Privacy Policy + Contact